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Evaluating the hot mix asphalt (HMA) expected performance is one of the significant aspects of highways
research. Dynamic modulus (E*) presents itself as a fundamental mechanistic property that is one of the
primary inputs for mechanistic-empirical models for pavements design. Unfortunately, E* testing is an
expensive and complicated task that requires advanced testing equipment. Moreover, a significant source
of difficulty in E* modeling is that many of the factors of variation in the HMA mixture components and
testing conditions significantly influence the predicted values. For each laboratory practice, a vast num-
ber of mixes are required to estimate the E* accurately. This study aims to extend the knowledge/practice
of other laboratories to a target one in order to reduce the laboratory effort required for E* determination
while attaining accurate E* prediction. Therefore, the transfer learning solution using deep learning (DL)
technology is adopted for the problem. By transfer learning, instead of starting the learning process from
scratch, previous learnings that have been gained when solving a similar problem is used. A deep convo-
lution neural networks (DCNNs) technique, which incorporates a stack of six convolution blocks, is newly
adapted for that purpose. Pre-trained DCNNs are constructed using a large data set that comes from dif-
ferent sources to constitute cumulative learning. The constructed pre-trained DCNNs aim to dramatically
reduce the effort elsewhere (target lab) when it comes to the E* prediction problem. Then, a laboratory
effort reduction justification is investigated through fine toning the constructed pre-trained DCNNs using
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a limited amount of the target lab data. The performance of the proposed DCNNs is evaluated using rep-
resentative statistical performance indicators and compared with well-known predictive models (e.g., g-
based Witczak 1-37A, G,d-based Witczak 1-40D and G-based Hirsch models). The proposed methodology
proves itself as an excellent tool for the E* prediction compared with the other models. Moreover, it could
preserve its accurate performance with less data input using the transferred learning from the previous
phase of the solution.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

One of the fundamental parameters of the hot mix asphalt
(HMA), which is widely recognized nowadays, is the dynamic mod-
ulus (E*). It is defined as the strain response of asphalt mixtures as
a function of the temperature and the loading rate. It represents
the HMA’s stiffness under a continuous loading [1]. It is measured
by the resistance to compressive deformation when subjecting to
cyclic compressive loading [2]. In a frequency domain, the
stress–strain relationship of continuous sinusoidal loading results
in a complex number which its absolute value is E*.

The dynamic modulus is a crucial material input, not only for
Mechanistic-Empirical (ME) pavement design method [3] but also
for pavement performance evaluation models associated with fati-
gue cracking and rutting [4]. Moreover, the dynamic modulus is
considered a prospective quality assurance/quality control (QA/
QC) parameter for flexible pavements in the field [5].

The Asphalt mixture is not a homogenous material, where its
characteristics (e.g., stiffness, elasticity, etc.) are governed by the
internal components properties such as aggregate gradation and
strength, binder viscosity, and mix proportions besides some
external factors such as climate [6]. For instance, the asphalt mix-
ture non-linear behavior is prevalent at higher temperatures and
low frequencies of loading, on the contrary, the mixture’s binder
itself behaves non-linearly at lower temperatures and higher fre-
quencies [7]. Also, the asphalt mixture response at temperatures
above 40 �C depends highly on the structure of the aggregates
while this dependency disappears at low temperatures [8]. Fortu-
nately, E* could be considered a representative of these factors
besides a predictor for other mixture potential characteristics [9].

E* is sensitive to the mixture component since the change in
one of the mixtures’ proportions might have a significant effect
on the HMA dynamic modulus [10]. For instance, under normal
conditions, the modulus for the asphalt specimen is predominantly
controlled by the aggregate proportions and their internal friction
[11,12]. Furthermore, it is confirmed that increases air voids result
in lower E* besides shorter fatigue life [13]. Moreover, the binder
grade (PG) affects the values of E* at temperatures higher than
30 �C. Modifiers, like lime, increase the HMA dynamic modulus val-
ues [14]. Even in reclaimed asphalt pavements, the E* is sensitive
to the percentage of fines [15].

In addition to the high cost associated with E* laboratory deter-
mination, its procedures are complex and time-consuming.
According to AASHTO TP62-07, the standard process of tests for
measuring the dynamic modulus (i.e., determining E* for one spec-
imen mixture) is a burdensome task. It stipulates a testing machine
that is able to apply a controlled haversine (sinusoidal) compres-
sive load. It also should have load frequencies that range from
0.1 to 25 HZ and cumulative stress up to 400 psi (2800 kpa). The
laboratory environment is also required to adapt the specimen to
different temperatures that range from �10 to 60 �C. All this must
be accompanied by the accuracy of applying and measuring
[16,17].

Equipment, which is called asphalt mixture performance tester
(AMPT), is developed as a part of [18] to evaluate the performance
of HMA mixtures such as; rutting resistance and fatigue [19,20]. It
helps in measuring E* over a range of loading frequencies and tem-
peratures. As it is the assumed behavior of the HMA to follow the
superposition of the time–temperature, a master curve is con-
structed to describe the visco-elastic action of the HMA regarding
both loading frequency and temperature [21,22]. However, most
of the existing studies to date have not focused on the testing
method when different laboratories use mixture proportions or
investigated how the variability in the various laboratories, would
affect the measured E* of the HMA for the same material [23].

To this end, the E* modeling process is a challenging task associ-
ated with a high degree of uncertainty, complexity, and cost. Thus,
developing a global predictive model that requires the minimum
amount of data becomes a necessity. This study attempts to extend
the prior information and models obtained previously in the
dynamic modulus prediction using the deep learning architecture.
The aim behind this is to reduce the required number of testing
samples for E* prediction while maintaining a suitable accuracy.

The structure of the article is as follows. Section 2 presents the
literature review. Section 3 provides regression-based E* predictive
models. Section 4 defines input data sets. Section 5 presents the
proposed methodology. In Section 6, results and discussion are
presented. Conclusions are presented in section 7.
2. State of the art

The dynamic modulus of the HMA has received considerable
attention in the literature due to its importance in addition to
the difficulty of deriving its predictive models’ accuracy. Numerous
studies have been made, over the years, to develop dynamic mod-
ulus predictive models based on HMA’s material proportions and
properties [24,25]. Some of these studies resulted in widely used
and well-known E* predictive regression models, besides recently,
more advanced techniques other than regression, which are based
on complex machine learning techniques [12].

Regarding E* predictive regression models, the most widely
used models are Witczak 1-37A [26], Witczak 1-40D [27], and
Hirsch [19] models, which are regression-based models built using
several E* laboratory databases. Witczak’s E* predictive models are
adapted in the ME pavement design software for pavement design
and analysis when using HMA level 2 or 3 inputs [3,27]. The ME
pavement design software performs at three distinct levels (levels
1, 2, and 3). For level 1, laboratory measurements of dynamic mod-
ulus are required, while for levels 2 and 3, dynamic modulus values
are estimated using Witczak predictive models. However, level 2
uses measured values of binder stiffness or viscosity, but level 3
uses typical values from similar mixtures based on the designer
prior experience.

Numerous attempts have evaluated the performance of these
regression-based E* predictive models in terms of their variance
and bias using independent data sets. Based on their evaluation,
many researchers reported non-consistent performances of these
predictive models with a tendency to vary according to the type
of the HMA mixture and its volumetric characteristics. In [28,29],
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Witczak NCHRP 1-40D andWitczak NCHRP 1-37A models are eval-
uated. It is concluded that the E* for the NCHRP 1-37A in the
MEPDG level-3 inputs produced the least biased and the most
accurate estimates. In contrast, NCHRP 1-40D resulted in the high-
est biased estimates with the lowest prediction accuracy for the
same phase of design.

Reviewing different lab practices, in Australian [30], Hirsch and
Witczak NCHRP 1-37A under-predicted the dynamic modulus,
whereas Witczak 1-40D over-predicted it. Regarding the Kingdom
of Saudi Arabia (KSA) practice, in [31], the Witczak models, along
with the Hirsch model, are investigated based on 25 different mix-
tures. All models in level 3 show the highest estimation accuracy
with slight superiority to the Witczak1-37A model. On the con-
trary, the Hirsch model shows some bias higher thanWitczak mod-
els. In Pakistan [32], the NCHRP 1-37A model for different samples
is proved to underestimate the E* values of considered mixtures
continuously. The same conclusion is obtained in [33,34], where
the three models are evaluated against the prediction accuracy
for 15 asphalt mixtures, which are widely accepted in Greece. It
could be generally concluded that these regression-based E* pre-
dictive models exhibit noticeable bias at low and/or high-
temperature spectrum [35,36].

To accommodate this inconsistency, other studies have
attempted to calibrate these well-known models for their own or
develop new ones. In [37], in the state of Michigan, a newly devel-
oped analytical model is calibrated from NCHRP 1-40D model that
shows improved prediction accuracy. Whereas in [38], the reliabil-
ity of E* prediction is improved at high temperatures introducing
parameters that represent the gradation distribution of aggregates.
A linear model is produced and calibrated with 24 different mix-
tures and validated with 11 mixtures.

Recently, coupled with the rapid development in computer pro-
graming, machine learning (ML) approaches have attained great
attention in asphalt mixtures performance prediction [39–42].
ML approaches are systems built to imitate the human brain and
perception by learning automatically from previous experiences
and have been applied to many civil engineering problems [39,43].

Artificial Neural Networks (ANNs) technique is one of the oldest
and the most applied ML approaches developed by McCulloch and
Pitts [44]. ANNs have the ability to lean and recognize the trends of
data patterns without knowing the form of predictive relationships
[45,46]. In recent years, ANNs have been used to predict the E* for
the HMA mixtures with high accuracy and less bias compared to
the well-known regression-based predictive models [36,47–49].
In these consecutive studies [35,36,47,50], the Witczak database
of extensive data records from various HMA mixtures are used
within some proposed ANNs structures to suggest the best struc-
ture for these data finally.

In [51], the three well-known regression models are compared
with the ANNs models for laboratory data from KSA with the same
set of parameters used in the regression models where the ANNs
overcome these popular models’ accuracy. Similarly, in [52], three
different ANNs structures are developed for predicting the E* for
the HMA using data from an online data repository found in [53].
The three predictive structures are trained with the same group
of parameters used in Witczak and Hirsch models. The model with
a three-layer back-propagation feedforward and a transfer function
of sigmoidal type is found to achieve the highest accuracy. How-
ever, there are some shortcomings associated with using the ANNs,
such as; poor generalization performance, arriving at local mini-
mum, over-fitting problems, and trouble in the prediction in case
inputs are outside the training database range.

Support Vector Machine (SVM) is another ML technique that is
derived from the statistical learning theory, developed by Vapnik
and Chervonenkis in 1964 [54]. It has been reported that the
SVM has a better generalization performance than conventional
ANN [55]. However, the ANN-based E* predictive model attained
higher prediction accuracy than the SVM-based one, and both
models achieved better accuracy than the Witczak 1-37A model
[56].

Genetic Programming (GP) is a part of a broader family of ML
techniques that uses a population of individuals, individuals are
selected according to fitness, and then via specific operators, the
genetic variation is achieved. The GP is first introduced by Koza
in 1992 [57]. The GEP is a linear variant of GP, where individuals
are represented as linear strings [58]. In [59], two based ANN
and GEP models are developed for the E* prediction of asphalt mix-
tures containing recycled shingles, and then their performance is
compared with the Witczak 1-37A model. Compared with other
models, the GEP is proved to avoid overtraining, achieve better
generalization performance, and create a transparent-structured
representation [60].

Naturally, examining new developments in the ML techniques
for the E* prediction becomes an open contribution to the problem
literature. As a final example, the random forests algorithm, which
is first introduced by Ho in 1995 [61] and then extended by Brei-
man in 2001 [62], is another ML technique used for classification
and regression problems [61]. It creates a forest of an ensemble
of decision trees by utilizing a different bootstrap sample of data
and merges them to get an accurate prediction. It is considered
more user-friendly compared to ANNs and SVMs with less sensitiv-
ity to parameters change due to the fact of owning only two
parameters (i.e., number of trees in the forest and number of vari-
ables in each random node subset). In 2020, Daneshvar and Beh-
nood [63] developed an E* predictive model based on the
random forests algorithm using a comprehensive database. Based
on their results, their model improved prediction accuracy com-
pared with the Witczak NCHRP 1-40D model.

In short, the covered literature shows confusing results regard-
ing the prediction accuracy and bias of thewell-known E* predictive
models. On the other hand, laboratory determination of the E* is not
only tedious and time-consuming but also demanding of costly,
advanced equipment and skills, which are not easily accessible.
Moreover, the different machine learning predictive models
requires a lot of data points to achieve the aimed prediction accu-
racy. Furthermore, amajor source of difficulty in E*prediction is that
many of the factors of variation in mixture components and testing
conditions significantly influence the E* values. In otherwords,most
E* predictivemodels are built using specific region databases, which
may not be appropriate for other regions’ databases.

This study contributes to the literature in two points; 1)- Adopt-
ing a new ML method to the problem. 2)- Reducing the laboratory
effort needed for the E* determination (training data) while attain-
ing a plausible accuracy of prediction. This is done through trans-
ferring the accumulated experience in E* determination (i.e.,
historical data) with collaborating deep convolution learning tech-
nology. Where, pioneer pre-trained deep convolution neural net-
works (DCNNs) are constructed using a comprehensive E*
database from different regions all around the world. Subse-
quently, laboratory effort reduction justification is investigated
through fine toning the constructed pre-trained DCNNs using a
limited amount of new laboratory data. Moreover, validation of
developed DCNNs models accuracy and bias is considered with a
comparison with well-known E* predictive regression models;
Witczak 1-37A [26], Witczak 1-40D [27] and modified Hirsch
[19], using the same input parameters.
3. Regression-based E* predictive models

In this section, the widely used regression-based E* predictive
models are enumerated to highlight the most commonly accepted
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controlling parameters for the dynamic modulus prediction. As
stated in the literature, these models are Witczak 1-37A [26], Witc-
zak 1-40D [27] and modified Hirsch [19] and they are illustrated in
the following subsections

3.1. Witczak 1-37A model

TheWitczak 1-37Amodel is a revision of the original Witczak E*
predictive regression equation based on 2,750 data points from
205 mixtures, known as the 1999 g-based National Cooperative
Highway Research Program (NCHRP) 1-37A Witczak model. The
NCHRP 1-37A Witczak model is a non-linear regression equation
that incorporates mixture volumetric properties, aggregate grada-
tion, and binder viscosity as follows:

log10 E
�j j ¼ �1:249937þ 0:02923q200 � 0:001767 q200ð Þ2

�0:002841q4 � 0:058097Va � 0:802208
Vbeff

Vbeff þ Va

� �

þ3:871977� 0:0021q4þ0:003958q38 � 0:000017 q38ð Þ2
1þ e �0:603313�0:313351 log f�0:393532loggð Þ

+ 0:00547q34
1þe �0:603313�0:313351 log f�0:393532loggð Þ (1)

where E* = HMA dynamic modulus [6.89 � 103 MPa (105 psi)];
p200 = Percentage of aggregate passing #200 sieve; p4 = Percentage
of aggregate retained in #4 sieve; p3/8 = Percentage of aggregate
retained in 3/8-inch (9.56-mm) sieve; p3/4 = Percentage of aggre-
gate retained in 3/4-inch (19.01-mm) sieve; Va = Percentage of air
voids (by volume of mix); Vbeff = Percentage of effective asphalt
content (by volume of mix); f = Loading frequency (Hz); g = Binder
viscosity at temperature of interest (106 Poise (105 Pa.s)).

3.2. Witczak 1–40 model

In 2005, Bari and Witczak [64] reformulated the E* predictive
model to incorporate the Superpave binder shear modulus (G*)
instead of the binder viscosity parameter (g). The model is a
non-linear regression equation based on 7,400 data points of 346
mixtures, known as 2007 G*, d-based NCHRP 1-40D Witczak
model. The NCHRP 1-40D Witczak model incorporates mixture
volumetric properties, aggregate gradation, binder shear modulus,
and binder phase angle as follows:

log10 E
�j j ¼ 0:02þ 0:758 G�

b

�� ���0:0009
� �

�
6:8232� 0:03274q200 þ 0:00431 q200ð Þ2 þ 0:0104q4

�0:00012 q4ð Þ2 þ 0:00678q38 � 0:00016 q38ð Þ2�
0:0796Va � 1:1689 Vbeff

VbeffþVa

� �
0
BB@

1
CCA

þ
1:437þ 0:03313Va þ 0:6926 Vbeff

VbeffþVa

� �
þ 0:00891q38

1þ e �4:5868�0:8176 log G�
bj jþ3:2738logdð Þ

� 0:00007 q38ð Þ2 þ 0:0081q34

1þ e �4:5868�0:8176 log G�
bj jþ3:2738logdð Þ ð2Þ

where E* = HMA dynamic modulus [6.89 � 10�2 MPa (psi)];
G�

b

�� ��= dynamic shear modulus of asphalt binder (psi); db = binder
phase angle associated with G�

b

�� �� (degrees); and the remaining
parameters and their units are as in Eq. (1).

Since some of the mixtures in the database may not contain bin-
ders’ G�

b

�� �� and d values, these values are estimated based on A-VTS
values [28], using the following regression equation:
g ¼ G�
b

10

� �
1

sind

� �4:8628

ð3Þ

loglogg ¼ Aþ VTS log TR ð4Þ

logloggf s ;T
¼ A

0 þ VTS
0
log TR ð5Þ

A
0 ¼ 0:9699� f�0:0527

s � A ð6Þ

VTS
0 ¼ 0:9668� f�0:0575

s � VTS ð7Þ

db ¼ 90� 0:1785� log gf s ;T

� �2:3814
� f sð Þ 0:3507þ0:0782VTS

0� �
ð8Þ

G�
b

�� �� ¼ 1:469� 10�9 � log gf s ;T

� �12:0056
� f sð Þ 0:7418ð Þ sindbð Þ0:6806 ð9Þ

f s ¼
f c
2p

ð10Þ

where g = binder viscosity [cP (centipoise)]; TR = testing tem-
perature (Rankine); fs = loading frequency (as used in the complex
shear modulus test of asphalt binders) (Hz); and fc = loading fre-
quency (as used in the complex dynamic modulus test of asphalt
concrete mixtures) (Hz); A, VTS = regression intercept and slope
of the viscosity-temperature relationship respectively; A’ , VTS’ =
adjusted A and VTS for loading frequency respectively; gfs,T = binder
viscosity as a function of both loading frequency (f

s
) and tempera-

ture (TR) (cP); db = binder phase angle (degrees); G�
b

�� �� = binder shear
modulus (psi).

3.3. Modified Hirsch model

The Hirsch model is based on the parallel model of mixtures
law, which is built using 206 data points from 18 different HMA
mixtures containing eight different binders. This model incorpo-
rates only the binder shear modulus and volumetric properties of
the mix, as presented in the following equations:

E� ¼ Pc 4;200;000 1� VMA
100

� �
þ 3 G�j j VFA� VMA

10;000

� �	 


þ 1� Pcð Þ � 1� VMA
100

� �
4;200;000

þ VMA
3� VFA� G�j j

	 
�1

ð11Þ

Pc ¼
20þ VFA�3 G�j j

VMA

� �0:58

650þ VFA�3 G�j j
VMA

� �0:58 ð12Þ

where E*= dynamic modulus of the mixture [6.89 � 10�2 MPa
(psi)]; Pc = contact factor; |G*| = G�

b

�� �� = shear modulus of the binder
[6.89� 10�2 MPa (psi)]; VMA = voids in the mineral aggregates (%);
and VFA = voids in mineral aggregates filled with the binder (%).

4. Data sets

When dealing with ML techniques, the data set is a crucial ele-
ment in the technical implementation. Variability and consistency
in the offered data manage the technique achieving better perfor-
mances in the training and prediction stages. The laboratory test
data implemented in this work comprises two sets; data set #1,
and data set #2. While the data set #1 is used as the prior informa-
tion found before attempting to predict E* in the target lab, data set
#2 is used to justify the potential effort reduction in the needed
data for E* prediction. We should note the main objective of this
work is to reduce the amount of data needed from any data sets
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(e.g., data set #2) to predict E* resorting to previous/cumulative
experience (e.g., data set #1).

Table 1 presents descriptive statistics of the implemented data
sets. The data set #1 is a combination of three valuable databases
from different regions all around the world; Arizona State Univer-
sity (ASU) in the USA, Australia, and the Kingdom of Saudi Arabia
(KSA) databases.

Arizona State University (ASU) database contains a comprehen-
sive set of test data from various studies. The majority of this data-
base comprises laboratory tests that were conducted as part of
TRB’s National Cooperative Highway Research Program (NCHRP)
studies at the University of Maryland and then continued at Ari-
zona State University (ASU) [27,65]. Also, the ASU database con-
tains tests results from several material-characterization studies
conducted for the Arizona Department of Transportation (ADOT).
The ASU database that is used in this study contains a total of
2490 E* test results from 83 mixtures with different gradations,
volumetric characteristics, and binder types. The range of temper-
atures used for E* testing varies from �10 �C to 54.4 �C, with stress
ranged from 0.1 Hz to 25 Hz. A more detailed description of the
ASU database can be found in [20].

The Australia database contains 1002 E* measurements of 22
different Australian asphalt mixes produced by Australia’s leading
asphalt producers [66,67]. Investigated mixtures cover most com-
monly used asphalt materials in Australia’s major projects. Out of
the 22 combinations, 12 blends have a Nominal Maximum Aggre-
gate Size (NMAS) of 14 mm and 10 mixes with NMAS of 20 mm.
Mixtures have a Rap content ranges from 0 to 30%. E* tests were
carried out on the asphalt mixtures at four temperatures (5, 20,
and 35, 50 �C) and five different frequencies (0.5, 1, 5, 10, and
25 Hz).

KSA database contains comprehensive E* data (2568 measure-
ments) for 25 Superpave mixtures that are widely used in the
KSA [31,68]. The KSA mixtures have different aggregate gradations
and binder performance grades that cover the different KSA’s cli-
matic regions. Binders used in these mixtures are modified either
with crumb rubber or different polymers. E* tests were carried
out on the asphalt mixes at four temperatures (-10, 4.4, 21.1, and
54.4 �C) and six loading frequencies (0.1, 0.5, 1, 5, 10, and 25 Hz).
Table 1
Summary of the implemented databases.

Data Set Variable Range
Minim

Data Set #1 Aggregategradation q3/4 (%) 0
q 3/8 (%) 5.0
q 4 (%) 34.0
q 200 (%) 1.8

MixtureVolumetric Va (%) 0.7
Vbeff (%) 5.5

Binder gI(x106 poise) 1.70E
|Gb*|(psi)

II 1.45E
dIII (degree) 0.14

Loading Frequency fc (Hz) 0.1
Dynamic modulus /E*/ (psi) 9.43E

Data Set #2 Aggregategradation q 3/4 (%) 0.0
q 3/8 (%) 3.4
q 4 (%) 24.3
q 200 (%) 0.0

MixtureVolumetric Va (%) 6.5
Vbeff (%) 9.6

Binder gI (x106 poise) 4.46E
|Gb*|(psi)

II 1.37
dIII (degree) 11.4

Loading Frequency fc (Hz) 0.1
Dynamic modulus /E*/ (psi) 1.75E

I: Variable only used in g-based Witczak 1-37A and g-based DCNNs
II: Variables only used in G & d-based Witczak 1-40D, G,d-based DCNNs, G-based Hirsch
III: Variables only used in G & d-based Witczak 1-40D, G,d-based DCNNs
On the other hand, the data set #2 is a database from a study
conducted in [69]. In which, 13 mixtures, from four different
demonstration projects in Indiana, Iowa, Minnesota, and Missouri,
tested at Iowa State University at three different temperatures (4,
21, and 37 �C) and nine different frequencies (0.1, 0.2, 0.5, 1, 2, 5,
10, 20, and 25 Hz). The database contains 1,701 experimental data
points of E*.
5. Methodology

One of the fastest-growing methods in the field of ML, which
has gained popularity in the last years due to its outstanding
results in numerous engineering application domains, is deep
learning architecture (DL) [70,71]. DL architecture is an artificial
neural network that contains multiple layers (deep networks)
between input and output layers [72]. Multiple layers allow the
architecture to progressively extract high-level features from the
raw input data [73,74]. Therefore, DL architecture has the potential
to learn complicated features and functions of input data than
an artificial neural network does [75]. One of the most successful
DL architectures is the deep convolutional neural networks
(DCNNs) [76]. The name ‘‘convolutional” implies that the network
uses mathematical operation called convolution, in which sliding
convolutional filters (kernels) are applied to the input [77]. DCNNs
have gained considerable attention due to its capability for auto-
matic feature extraction, hierarchical learning, multi-tasking, and
weight sharing [78,79]. However, very limited research has
adapted the DCNNs architecture in the field of pavement engineer-
ing and infrastructural materials, and no study, to the best of our
knowledge, has used it in the E* prediction of the HMA. In the pro-
posed methodology, two consequent phases are constructed; first
phase: pre-trained DCNNs, and second phase: fine-toned DCNNs.

In the pre-trained DCNNs phase, three DCNNs are built, trained,
and tested using a global E* database from different regions all
around the world (data set #1). In the fine-toned DCNNs phase,
the three pre-trained DCNNs are fine-toned with a limited portion
of a new laboratory database (data set #2), then tested with the
rests of it. The main reason for the fine-toned DCNNs stage is the
um Maximum Mean Standard Deviation

26.10 4.10 6.65
58.2 26.6 11.7
74.0 49.9 8.0
8.5 4.9 1.3
18.1 6.3 2.1
25.1 9.8 2.8
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87.7 50.6 23.3
25 7.1 8.8

+ 03 8.64E + 06 1.42E + 06 1.41E + 06
0.8 0.1 0.2
27.0 13.4 5.8
61.0 38.3 10.6
1.5 0.9 0.4
7.3 6.9 0.2
11.5 10.5 0.5

-01 2.70E + 04 6.61E + 03 1.07E + 04
1.41E + 04 2.22E + 03 3.49E + 03
69.7 43.9 17.2
25.0 7.1 8.8

+ 04 2.80E + 06 9.30E + 05 7.37E + 05

, and G-based DCNNs
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laboratory effort reduction justification, i.e., only a small amount of
laboratory data is needed for valuable E* prediction.

The input parameters for the constructed DCNNs are the same
as those used for the widely used E* predictive regression models;
section 3, at binder input Level 2 according to the ME pavement
design guide. Table 2 illustrates the data variables used for regres-
sion and DCNNs E* predictive models.

For the two phases (pre-trained DCNNs, and fine-toned DCNNs),
inputs and outputs of the two data sets (data set #1, and data set
#2) are normalized to values between 0 and 1, and then each data
set is randomly divided into two groups: training and testing. In
the pre-trained DCNNs phase, out of the 6,060 data points in the
data set #1, 80% are used for training, and the remaining 20% is
used for testing. In the fine-toned CNNs phase, out of the 1,701
Data Set #1

η-based G,δ-based G-based

PHASE #1

Regression 
Models

Pre-trained 
DCNNs

Performance E

Loss func

Fig. 1. The research met

Table 2
Variables used in E* predictive regression and DCNNs models.

Variables E* predictive Models

g-based

Witczak 1-37A DC

Inputs Aggregate q 3/4 (%) X X
q 3/8 (%) X X
q 4 (%) X X
q 200 (%) X X

Binder g(cP) X X
Gb* — —
d (degree) — —

Mix Va (%) X X
Vbeff X X
VMA (%) — —
VFA (%) — —

Temperature T (0C) — —
Stress fc (Hz) X X

Output E* (psi) X X
data points in the data set #2, only 20% is used for training, and
the remaining 80% is used for testing. The research methodology
flowchart is summarized in Fig. 1.

5.1. Deep convolution neural networks architecture

The architecture of the proposed DCNNs (pre-trained DCNNs
and fine-toned DCNNs) consists of an input layer followed by a
stack of six convolution blocks, then a fully connected layer and
ending with an output layer, as illustrated in Fig. 2. Each convolu-
tion block comprises of three consequent layers: a convolution
layer, a batch normalization layer, and a ReLU activation layer, as
shown in Fig. 3. The description of the DCNNs components is as
follows:
PHASE #2

Data Set #2

valuation

η-based G,δ-based G-based

Fine-toned 
DCNNs

Regression 
Models

tions

hodology flowchart.

G,d-based G-based

NNs Witczak 1-40D DCNNs Hirsch DCNNs

X X — —
X X — —
X X — —
X X — —
— — — —
X X X X
X X — —
X X — —
X X — —
— — X X
— — X X
— — — —
— — — —
X X X X



Convolutional Layer

Batch Normalization Layer

ReLU Activation Layer

Fig. 3. Main Convolutional Block of the proposed DCNNs architecture.
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Fig. 2. Proposed Deep Convolutional Neural Networks (DCNNs) architecture.
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� First, the input layer: it feeds the array of the input data to the
network. It normalizes the input data by subtracting the data
set’s mean from each data input.

� Second, the convolution blocks: each convolution block includes a
convolution layer, a batch normalization layer, and the ReLU
activation layer.

� Third, the fully connected layer: it is mostly used at the end of any
DCNNs just before the output layer for prediction purposes.

� Finally, the output layer: is the last layer in the DCNNs that fol-
lows the fully connected layer.

The convolutional layer is the core building layer of the DCNNs.
Its primary purpose is to extract distinct features from the input
data. The convolutional layer consists of the sequence of convolu-
tional filters (learnable kernels) that extract local features from the
input data. In which, each filter (kernel) calculates a feature map
by computing the dot product of the weights and the input and
then adding a bias term [80].

One of the main challenges for all deep learning networks is the
overfitting, which occurs when there is a large gap between the
training error and the testing error. One of the methods to avoid
overfitting is applying regularization during training, which can
be achieved via normalization [81]. A batch normalization layer
is implemented in our DCNNs, between the convolutional layer
and the ReLU activation layer. The batch normalization layer is
used not only for regularization purpose but also it allows each
segment of the network to learn independently from other layers.
Moreover, the batch normalization layer speeds up the training
process and reduces the sensitivity to the DCNNs initialization
[82]. The batch normalization layer normalizes each input channel
(from the input layer) across a mini-batch in two steps.

In the first step, the batch normalization inputs (xi) are normal-
ized by subtracting the mini-batch mean (lB) and dividing by the
mini-batch variance (r2
B ) over the mini-batch and over each input

channel. In the second step, the batch normalization calculates the
normalized activations as;

bxi ¼ xi � lB

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Bþ 2� �q
0
B@

1
CA ð13Þ

where; e is the property Epsilon that is used to improve numer-
ical stability when the mini-batch variance is minimal. Then, the
batch normalization layer shifts the input by a learnable offset
(b) and scales it by a learnable scale factor (c) as;

yi ¼ cbxi þ b ð14Þ
where; b & c are offset and scale properties, respectively, that

are learnable parameters and updated during network training.
After finishing the training process, the batch normalization layer
calculates the mean and variance over the fully trained data and
stores them as trained-mean and trained-variance properties.
Afterward, when the DCNNs are used for predictions (using new
data), the batch normalization layer uses the trained-mean and
variance instead of the mini-batch mean and variance for normal-
izing the activations.

The Rectified Linear Unit (ReLU) is a non-linear activation layer,
which works as a decision function (f xð Þ ¼ max 0; xð Þ), where any
input value less than zero is set to zero. ReLU introduces the
non-linearity into the DCNNs that helps in learning more complex
patterns [83]. There are other non-linear activation functions
such as; the saturating hyperbolic tangent (f xð Þ ¼ tanh xð Þ,f xð Þ ¼
tanh xð Þj jÞ and the sigmoid function (r xð Þ ¼ 1þ e�xð Þ�1Þ. However,
the ReLU is often preferred to other non-linear activation functions
because it overcomes the vanishing gradient problem and trains
the DCNNs much faster than other functions without significantly
affecting the generalization accuracy [71].

For the fully connected layer, as the name implies, all neurons in
the fully connected layer have connections to all the neurons in the
previous layer. It takes the input from feature extraction stages and
multiplies it by a weight matrix then adds a bias vector. The fully
connected layer can combine all of the features (local information)
learned by the previous layers to identify the more significant pat-
terns for E* prediction.

The output layer is a regression layer that computes the mean
squared error and the loss function for the E* prediction problem.
The loss function is the half-mean-squared-error of the predicted
E* for each time step, not normalized by n as presented in the fol-
lowing equations:

MSE ¼
Pn

i¼1 E�
pi � E�

mi

� �2

n
ð15Þ
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Loss ¼ 1
S

XS

i¼1

Xn
j¼1

E�
pi � E�

mi

� �2
ð16Þ

where; n is the number of values of E*, the subscripts p & m
indicate predicted, and measured values of E*, respectively, and
S is the sequence length.

5.2. Model performance evaluation

The evaluation process is considered as a foundation stone in
any prediction in order to answer the following questions: i) Does
the predictive model fit the data? ii) Which predictive model has
the best performance? And iii) How similar are the predictive
models?

In this study, the performance of the proposed and the com-
monly used E* predictive models are evaluated using the following
aspects: 1) Goodness-of-fit statistics, 2) Overall bias indicators, and
3) Regression error characterization curve.

A. The goodness-of-fit statistics
They are quantitative assessments of the predictive model’s

accuracy, i.e., how close the model’s predicted values are to their
corresponding measured values. They are performed using some
statistical parameters; the coefficient of determination (R2), and
the standard error of predicted values divided by the standard
deviation of measured values (Se/Sy). These goodness-of-fit statis-
tics parameters are calculated for each predictive model, using the
following equations [84]:

Se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

E�
pi � E�

mi

� �2

n� p

0
BB@

1
CCA

vuuuuut ð17Þ

Sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

E�
mi � E�

m

� �2

n� 1

0
BB@

1
CCA

vuuuuut ð18Þ

R2 ¼ 1�
Pn

i¼1 E�
pi � E�

mi

� �2

Pn
i¼1 E�

mi � E�
m

� �2 ð19Þ
Table 3
Statistical parameters evaluation Criteria, Pellinen 2002 [84].

Model Accuracy R2 Se/Sy

Excellent � 0.9 � 0.35
Good 0.7–0.89 0.36–0.55
Fair 0.4–0.69 0.56–0.75
Poor 0.2–0.39 0.76–0.9
Very Poor � 0.19 � 0.9

Table 4
Goodness-of-fit statistics of the DCNNs models and regression models for phase #1& phas

Predictive model Phase #1

Goodness-of-fit
statistics

R2 Se/Sy

Regression models g-based Witczak 1-37A 0.54 0.68
G,d-based Witczak 1-40D 0.73 0.52
G-based Hirsch 0.52 0.70

DCNNs models g-based DCNN 0.95 0.21
G,d-based DCNN 0.96 0.19
G-based DCNN 0.80 0.42

* Model accuracy according to Pellinen 2002 standard evaluation criteria
where; n is the number of values of E*, the subscripts p & m
indicate predicted and measured values of E*, respectively, and

E�
m is the mean of the measured values of E*.
While R2 is a measure of the correlation between predicted and

measured values, the Se/ Sy is a direct indicator of uncertainty in
the predictive model. Therefore, R2 and Se/ Sy are considered as
indicators of the predictive model’s accuracy. Moreover, a higher
R2 and lower both Se/Sy values are desired for a better predictive
model’s accuracy. In [84], Pellinen developed standard evaluation
criteria for predictive models’ efficiency, which are presented in
Table 3. These criteria have been adapted in many research consid-
ering E* prediction [48,59,65,69,85]. Therefore, they are imple-
mented in this study.

B. Overall bias indicators
The goodness-of-fit statistics (R2 & Se/Sy) alone do not conclu-

sively define the model’s prediction accuracy. Where the existence
of overall model bias may significantly affect its prediction accu-
racy. Therefore, global bias indicators (slope, intercept, and average
error) for each predictive model have to be considered. By plotting
measured versus predicted E* values along with the line of equality
(LOE), the model’s slope, intercept, and average error can be esti-
mated by fitting an unconstrained linear trend line to the
measured-predicted plot [86].

The reliable model would have matching points clustered along
the LOE line, i.e., has a slope, intercept, and average error values
close to 1, 0, and 0, respectively. The deviation of the slope from
the unity indicates the dependence of the prediction errors to the
measured values [6]. On the other hand, the non-zero intercept
and average error suggest the model’s over- or under-prediction
[18,86].

C. Regression Error Characterization (REC) Curve.
REC curve, proposed in [87], is a graphical tool that can be uti-

lized for visualizing predictive models’ performance. Its drawn
curve is a generalization of the Receiver Operating Characteristic
(ROC) curve that is widely incorporated into classification prob-
lems. The REC curve is a two-dimensional graph, in which the x-
axis represents the absolute deviation (error tolerance), and the
y-axis represents the accuracy of the predictive model.

The REC curves are very informative and can provide a much
more convincing presentation of the predictive models’ perfor-
mance than other statistics since they consider the whole error dis-
tribution of the models rather than just a single indicator of error.
Also, they offer a specialized analysis and valuable information
about the performances of comparative E* predictive models. The
predictive model is said to perform well if its REC curve climbs
rapidly towards the upper left corner [88].
6. Results and discussion

The whole DCNNs architecture is implemented in MAT-LAB
R2018b software [89] that is run on a PC with Intel Core I7
e #2.

Phase #2

Model Accuracy* Goodness-of-fit
statistics

Model Accuracy

R2 Se/Sy

Fair 0.85 0.38 Good
Good 0.53 0.69 Fair
Fair 0.89 0.33 Good
Excellent 0.98 0.13 Excellent
Excellent 0.99 0.10 Excellent
Good 0.92 0.26 Excellent
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2.8-GHz processor, and 12 gigabytes of RAM. A multi-criteria
evaluation process of the proposed DCNNs and well-known
regression-based E* predictive models has conducted for the
two phases, including the aspects described in section 5.2, i.e.,
Fig. 4. Measured-predicted E* values plot using (a) g-based Witczak 1-37A, (b) g-based D
G-based DCNNs (phase #1, using 1212 data points).
i) goodness-of-fit statistics ii) overall bias indicators, and iii)
REC curves.

While, in the pre-trained DCNNs phase a total of 1212 data
points (20% of data set#1) are used to assess the performance of
CNNs, (c) G,d-based Witczak 1-40D, (d) G,d-based DCNNs, (e) G-based Hirsch, and (f)
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the predictive models, in the fine-toned DCNNs phase a total of
1361 data points (80% of data set#2) are used. It is worth noting
that, in the two phases, testing data are not used in the training
process for the independent validation process.

6.1. The pre-trained DCNNs

In this stage, the DCNNs are validated against the data set #1.
The importance of this step is that the DCNNs try to learn the rela-
tionships among the different controlling variables of the E*. It is
believed that deep learning architecture is able to learn the latent
features of the dynamic modulus and the asphalt mixture compo-
nents, where we could transfer this learning to the next phase of
the solution. Also, this step is essential in judging the performance
of the DCNNs for the E* prediction as a newML tool for the problem.

Details of the goodness-of-fit statistics for all proposed DCNNs
and well-known regression-based E* predictive models, in terms
of the correlation coefficient, R2 and Se/Sy, are presented in Table 4.
It is noticeable that DCNNs models exhibit higher prediction accu-
racy compared with regression-based models in terms of R2 and Se/
Fig. 5. Overall bias indicators for all E* predic

Fig. 6. REC curves for all E* predictive m
Sy. Both G,d-based DCNNs, and g-based DCNNs models achieve the
most superior performance. They attain the highest R2 of 0.96 &
0.95 respectively and the lowest Se/Sy of 0.19 & 0.21 respectively.
According to Pellinen [84], the evaluation criteria can be rated as
an excellent fit to data. In the 3rd place comes the G-based DCNNs
model with R2 and Se/Sy of 0.8 & 0.42 respectively, and a good
accuracy according to the Pellinen criteria. Then comes the G,d-
based Witczak 1-40D regression model of R2 and Se/Sy values of
0.73 & 0.52, respectively, with good accuracy. On the other hand,
low R2 and large Se/Sy values of both g-based Witczak 1-37A and
G-based Hirsch regression models indicate that they do not fit
the data well. Consequently, their accuracy can be rated as fair
according to the same criteria.

For an overview of how close predictions match measured data,
the measured-predicted plot for each E* predictive model, with its
best-fitting line compared with the line of equality (LOE), is
revealed, see Fig. 4. As can be seen in the figure, G,d-based DCNNs,
and g-based DCNNs models’ fitting lines are the closest to their
corresponding LOE, which indicates that they match well with
the measured data. On the other hand, both g-based Witczak 1-
tive models (a-phase #1 & b-phase #2).

odels (a-phase #1 & b-phase #2).
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37A and G-based Hirsch regression models fitting lines are the far-
thest to their corresponding LOE and also bellow them, which
implies their bad matches and underprediction of the measured
data. However, both G-based DCNNs and G,d-based Witczak
Fig. 7. Measured-predicted E* values plot using (a) g-based Witczak 1-37A, (b) g-based D
G-based DCNNs (phase #2, using1361 data points).
1-40D regression models fitting lines are close to their correspond-
ing LOE.

To get more insight into the models’ levels of over- or under-
prediction, the aforementioned overall bias indicators (slope,
CNNs, (c) G,d-based Witczak 1-40D, (d) G, d-based DCNNs, (e) G-based Hirsch, and (f)
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intercept, and average error) are depicted in Fig. 5.a. Slopes, inter-
cepts, and average errors of G,d-based DCNNs and g-based DCNNs
models are substantially the best since they are closer to 1, 0, and
0, respectively, in comparison with the other predictive models.
The results confirm their exposure to the smallest prediction bias.
In contrast, the G-based Hirsch regression model’s overall bias
indicators are the worst relative to other predictive models, with
a slope, intercept, and an average error of 0.82, 0.78, and �0.27,
respectively. Moreover, both g-based Witczak 1-37A and G-based
Hirsch regression models under-predicted E*, with an average
error of �0.17, and �0.27, respectively. G-based DCNNs and G,d-
basedWitczak 1-40D regression models exhibit overall bias indica-
tors relatively close to each other.

The REC curves for all proposed DCNNs and well-known
regression-based E* predictive models are depicted in Fig. 6. a,
which reveals that G,d-based DCNNs, and g-based DCNNs models
outperform other predictive models, as their REC curves climbed
rapidly towards the upper left corner. For the remaining four pre-
dictive models, G,d-based Witczak 1-40D regression model per-
forms better than the other ones as its REC curve is all the time
above their corresponding REC curves. Moreover, the g-based
Witczak 1-37A regression model seems to perform better than G-
based DCNNs and G-based Hirsch regression models for small val-
ues of absolute deviations (errors). Still, the opposite is the case as
the absolute deviation becomes larger (larger than 0.58). Further-
more, the G-based DCNNs model performed better than the G-
based Hirsch regression model.
6.2. The Fine-toned DCNNs

In this next stage, the second contribution of the study is exam-
ined. For the laboratory effort reduction justification, it is assumed
that the available conducted experimental points are 20% of the
data set #2. The remaining 80% of the data set is used for testing.

In this step (phase #2), we use the same performance indicators
in phase #1. Table 4, Fig. 5.b & 6.b, and Fig. 7 draw a similar anal-
ysis (as in sub-section 6.1.) for the models under study; however,
more conclusions could be derived in the comparison form. The
structure of data set #2 is more homogenous (i.e., comes from
one source) than data set #1 (i.e., multiple sources). Therefore,
regression-based models achieve more stability in prediction than
phase #1. On the contrary, DCNNs based models, in general, absorb
the variability in data and thus no noticeable change in the predic-
tion performance between the two phases. Interestingly, the
DCNNs models maintain the high accuracy in phase #2, despite
reducing the input data. Since, as known in ML learning practice,
increasing the training data leads to better results. The fine-
toned DCNNs managed to transfer the learning gained by the
pre-trained DCNNs using the data set #1 to the next phase.
7. Conclusions

In this study, the laboratory effort reduction is undertaken as
the central theme for the HMA dynamic modulus prediction prob-
lem. A powerful ML technique is introduced for that purpose as a
new solution methodology. The main goal is to reduce the labora-
tory effort needed for the E* determination using a pre-trained
Deep Learning (DL) model via a transfer learning. For the E* predic-
tion problem, such a pre-trained DL model is not available. There-
fore, the problem solution is justified by adapting deep convolution
learning technology (DCNNs) through two consequent phases; pre-
trained DCNNs and fine-toned DCNNs. Two different data sets are
used for that purpose, namely; data set #1 and data set #2. While
the data set #1 is used in the pre-trained DCNNs phase, data set #2
is used in the fine-toned DCNNs phase. Utilizing the same input
variables, the proposed DCNNs show a substantial superior predic-
tive performance, particularly G,d-based DCNNs, and g-based
DCNNs models, compared with the well-known regression-based
models. Also, the results confirm with the literature regarding
the inconsistency and bias associated with the well-known
regression-based predictive models (g-based Witczak 1-37A, G,d-
based Witczak 1-40D, and G-based Hirsch). Where both g-based
Witczak 1-37A and G-based Hirsch regression models under-
predict E* values when using the data set#1, while both g-based
Witczak 1-37A and G,d-based Witczak 1-40D regression models
over-predict E* values using data set#2. On the contrary, G,d-
based DCNNs, and g-based DCNNs models achieve high stable per-
formance indicators regarding the two data sets. The DCNNs
implementation in this paper opens the gate to investigate further
their applications in other complicated material properties
research in the context of pre-trained techniques. We believe that
the proposed pre-trained DCNNs can be adapted in future research
not only for E* prediction but also for any similar problem via
transfer learning.
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