

Course Specifications

Course Title:	Applied Heat Transfer
Course Code:	ME468
Program:	Mechanical Engineering (UG)
Department:	Mechanical & Industrial Engineering
College:	College of Engineering
Institution:	Majmaah University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes3	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content4	
D. Teaching and Assessment4	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation7	
H Specification Approval Data 7	

A. Course Identification

1. Credit hours:03	
2. Course type	
a. University College Department $\sqrt{}$	Others
b. Required Elective $\sqrt{}$	
3. Level/year at which this course is offered: 08/2019-20	
4. Pre-requisites for this course (if any): Nil	
5. Co-requisites for this course (if any): ME 354	

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	80
2	Blended	05	10
3	E-learning	05	10
4	Correspondence	0	0
5	Other	0	0

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours		
Conta	Contact Hours			
1	Lecture	45		
2	Laboratory/Studio	0		
3	Tutorial	15		
4	Others (specify)	0		
	Total	60		
Other	Learning Hours*			
1	Study	30		
2	Assignments	10		
3	Library	10		
4	Projects/Research Essays/Theses	05		
5	Others (specify)	5		
	Total	60		

^{*} The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

Classification of Heat Exchangers, Design Correlations and Fouling, Basic Thermal Design Methods and Iterative Techniques, Types of heat exchanger: Double-Pipe Heat Exchangers, Shell-and-tube Heat Exchangers, Compact Heat Exchangers, Other Heat Exchangers, Correlations for Two-Phase Flow, Condensers and Evaporators.

2. Course Main Objective

1. Understand unsteady state conduction and to apply Fourier equation.

- 2. To know the working principle of heat exchangers.
- 3. To determine heat transfer from surfaces with uniform cross-sections.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge:	
1.1	Memorize the classification of heat exchanger and apply on related problems.	a
1.2	Design Correlations and Fouling of heat exchanger and related numerical problems.	e
1.3	Basic Thermal Design Methods and Iterative Techniques for numerical problems.	a
1.4	Correlations for Two-Phase Flow, Condensers and Evaporators and numerical problems.	e
2	Skills:	
2.1	Correlations for Two-Phase Flow, Condensers and Evaporators and numerical problems.	a
2.2	Solving and analyzing complex numerical problems for heat transfer in the heat exchanger	e
2.3	Interpretation of the data and applying formulae and correlations for the given problems.	e
3	Competence:	
3.1	Demonstrate and share with classmates and teachers, help of internet for solving problems	e
3.2	Work with teams to appraise the issues	a

C. Course Content

No	List of Topics	Contact Hours
1	Classification of Heat Exchangers.	8
2	Design Correlations and Fouling.	8
3	Basic Thermal Design Methods and Iterative Techniques.	8
4	Types of heat exchanger: Double-Pipe Heat Exchangers.	8
5	Shell-and-tube Heat Exchangers.	8
6	Compact Heat Exchangers	4
7	Other Heat Exchangers, Correlations for Two-Phase Flow, Condensers and	16
	Evaporators	
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		
1.1	Memorize the classification of heat exchanger and apply on related problems.	Lectures, tutorials and independent study assignments	Home assignments and Quizzes. Midterms and Final Exam
1.2	Design Correlations and Fouling of heat	Lectures, tutorials and	Home

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	exchanger and related numerical problems.	independent study assignments, Power point presentation on different topic related to this subject.	assignments and Quizzes. Midterms and Final Exam.
1.3	Basic Thermal Design Methods and Iterative Techniques for numerical problems.	Derivations, formulae, use of principle of various system and devices, solving the numerical based problems	Mid Term/Quiz/Final Exam Home assignments and Quizzes. Midterms and Final Exam.
1.4	Correlations for Two-Phase Flow, Condensers and Evaporators and numerical problems.	Lectures, tutorials and study materials.	Home assignments and Quizzes. Midterms and Final Exam.
2.0	Skills		
2.1	Explain the results of the numerical problems	Class lectures, Tutorials, Home Assignments.	Class participation, Home assignments and Quizzes. Midterms and Final Exam.
2.2	Differentiate the mathematical equations use in system design.	Class lectures, Tutorials, Home assignments. Group discussions.	Home assignments and Quizzes. Midterms and Final Exam, Black Board submission.
2.3	Calculate the numerical values of questions and use computer application in solving problems.	Class lectures, Tutorials, Home assignments. Group discussions	Home assignments and Quizzes. Midterms and Final Exam, Black board submission
2.4	Participating in-group discussions.	Special Lectures on this topic.	Group discussion and Exams.
3.0	Competence		
3.1	Demonstrate and share with classmates and teachers, help of internet for solving problems	Making the teaching learning two-way communication. Getting students involved to solve problems and asking students did they understand the concept clearly.	Assignments, Term Exams and Final Exam

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	Work with teams to appraise the issues	Assignments without direct	
3.2		input, but let them calculate	Term Exams and
		inputs from source data	Final Exam

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Quiz 1,2,3	03,10,15	05
2	Assignment/Homework	05,12	10
3	Mid Term 1	07	20
5	Mid Term2	11	20
6	Activity	3,7,12,15	05
7	Final Exam	15	40
			100

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Lecture hours as given in Time Tables: Monday 3.00 p.m.-5.00 p.m., Tuesday8.00a.m.-9 a.m.

Tutorial Tuesday 11.00 a.m. - 11:50 a.m.

(Class Rooms E09 and E07)

Office hours: : 10 AM -12 Noon Wednesday

(Office location 044-02-17)

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	• Fundamentals of Heat and Mass Transfer, Incropera F. P. and Dewitt D. P. John Wiley & Sons, 2002.	
Essential References Materials	 Design and Optimization of Thermal Systems, Yogesh Jaluria, Taylor & Francis, Inc. 2007 Class Notes 	
Electronic Materials	 Black Board chapters are available on site for self-study of the students. Black Board Quiz and Question bank http://www.ThermalEngineering.net/courses/ 	
Other Learning Materials	 MS Excel Heat Transfer software http://www.ThermalEngineering.net/courses/ 	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Class Rooms

Item	Resources	
Technology Resources (AV, data show, Smart Board, software, etc.)	Smart board is provided	
Other Resources	 Interactive learning in the class. 	
(Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Course evaluation questionnaire.	
	 All students who attend the course fill forms. 	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of Teaching	Students	Indirect Assessment
CLOs achievement	Faculty	Direct/Indirect Assessments
Learning Resources	Students	Indirect Assessment
Course Contents	Students	Indirect Assessment

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Department Council
Reference No.	1/34/9767
Date	25/02/1432 H