





# **Course Specifications**

| Course Title:       | Design of Manufacturing Systems     |  |
|---------------------|-------------------------------------|--|
| <b>Course Code:</b> | ME 486                              |  |
| Program:            | Mechanical Engineering (UG)         |  |
| <b>Department:</b>  | Mechanical & Industrial Engineering |  |
| College:            | College of Engineering              |  |
| Institution:        | Majmaah University                  |  |

## **Table of Contents**

| A. Course Identification3                                                              |   |
|----------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                           | 3 |
| B. Course Objectives and Learning Outcomes4                                            |   |
| 1. Course Description                                                                  | 4 |
| 2. Course Main Objective                                                               | 4 |
| 3. Course Learning Outcomes                                                            | 4 |
| C. Course Content4                                                                     |   |
| D. Teaching and Assessment5                                                            |   |
| Alignment of Course Learning Outcomes with Teaching Strategies and Assessment  Methods | 5 |
| 2. Assessment Tasks for Students                                                       | 5 |
| E. Student Academic Counseling and Support6                                            |   |
| F. Learning Resources and Facilities6                                                  |   |
| 1.Learning Resources                                                                   | 6 |
| 2. Facilities Required                                                                 | 6 |
| G. Course Quality Evaluation7                                                          |   |
| H. Specification Approval Data7                                                        |   |

## A. Course Identification

| 1. Credit hours:03                                       |  |  |  |
|----------------------------------------------------------|--|--|--|
| 2. Course type                                           |  |  |  |
| <b>a.</b> University College Department $\sqrt{}$ Others |  |  |  |
| <b>b.</b> Required Elective $\sqrt{}$                    |  |  |  |
| 3. Level/year at which this course is offered: 10        |  |  |  |
| 4. Pre-requisites for this course (if any): ME 475       |  |  |  |
|                                                          |  |  |  |
|                                                          |  |  |  |
| 5. Co-requisites for this course (if any): None          |  |  |  |
|                                                          |  |  |  |
|                                                          |  |  |  |

**6. Mode of Instruction** (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b> | Percentage |
|----|-----------------------|----------------------|------------|
| 1  | Traditional classroom | 75                   | 80         |
| 2  | Blended               | 0                    | 10         |
| 3  | E-learning            | 0                    | 10         |
| 4  | Correspondence        | 0                    | 0          |
| 5  | Other                 | 0                    | 0          |

7. Actual Learning Hours (based on academic semester)

| No    | Activity                        | Learning Hours |  |  |  |
|-------|---------------------------------|----------------|--|--|--|
| Conta | Contact Hours                   |                |  |  |  |
| 1     | Lecture                         | 30             |  |  |  |
| 2     | Laboratory/Studio               | 30             |  |  |  |
| 3     | Tutorial                        | 15             |  |  |  |
| 4     | Others (specify)                | 0              |  |  |  |
|       | Total                           | 75             |  |  |  |
| Other | Other Learning Hours*           |                |  |  |  |
| 1     | Study                           | 30             |  |  |  |
| 2     | Assignments                     | 10             |  |  |  |
| 3     | Library                         | 10             |  |  |  |
| 4     | Projects/Research Essays/Theses | 05             |  |  |  |
| 5     | Others (specify)                |                |  |  |  |
|       | Total                           | 55             |  |  |  |

<sup>\*</sup> The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

#### **B.** Course Objectives and Learning Outcomes

#### 1. Course Description

Study of recent developments in manufacturing, Japanese manufacturing techniques, hybrid manufacturing management system, supply chain management, total quality management, design for manufacturing and assembly. Manufacturing automation fundamentals and strategies; High volume manufacturing systems; Automated handling and storage systems; Automated inspection systems; Flexible manufacturing systems; Modeling of manufacturing systems.

### 2. Course Main Objective

- 1. To know importance of Manufacturing Systems
- 2. To gain detailed knowledge in three areas: manufacturing processes and computer-integrated manufacturing systems
- 3. To learn manufacturing management strategies

3. Course Learning Outcomes

|     | CLOs                                                                                                                                        |   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1   | Knowledge:                                                                                                                                  |   |
| 1.1 | Recognize applicability of manufacturing systems                                                                                            | a |
| 1.2 | Outline and describe with use of appropriate techniques to optimize                                                                         | a |
|     | components in manufacturing and supply chain systems                                                                                        |   |
| 2   | Skills:                                                                                                                                     |   |
| 2.1 | Capabilities to demonstrate machine loading                                                                                                 | e |
| 2.2 | An ability to explain and apply design concepts in solving problems related to maximal flow optimal distances                               | e |
| 3   | Competence:                                                                                                                                 |   |
| 3.1 | Ability to involve group based assignment, to demonstrate so that they share with classmates and teachers, help of internet for solving it. | k |
| 3.2 | Group tasks and projects to work with teams to appraise the issues                                                                          | k |

#### C. Course Content

| No    | No List of Topics                                                                                        |    |
|-------|----------------------------------------------------------------------------------------------------------|----|
| 1     | Current developments in manufacturing, Japanese manufacturing systems, High volume manufacturing systems | 10 |
| 2     | 2 Supply chain management                                                                                |    |
| 3     | 3 Inspection systems Total quality management                                                            |    |
| 4     | Flexible manufacturing systems Automated handling and storage systems, Automation strategies             |    |
| 5     | 5 Modeling manufacturing system,                                                                         |    |
| Total |                                                                                                          |    |

## **D.** Teaching and Assessment

## **1.** Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| MICH     |                                                                                                                                             |                                                                                                                                                                    |                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Co<br>de | Course Learning Outcomes                                                                                                                    | Teaching Strategies                                                                                                                                                | Assessm<br>ent<br>Method<br>s |
| 1.0      | Knowledge                                                                                                                                   |                                                                                                                                                                    |                               |
| 1.1      | Recognize applicability of manufacturing systems                                                                                            | Formal face to face lectures to focus on strategies and principles of manufacturing systems                                                                        | a                             |
| 1.2      | Outline and describe with use of appropriate techniques to optimize components in manufacturing and supply chain systems                    | Formal face to face lectures optimization on machine loading, sequencing                                                                                           | a                             |
| 2.0      | Skills                                                                                                                                      |                                                                                                                                                                    |                               |
| 2.1      | Capabilities to demonstrate machine loading                                                                                                 | Allowing students to think to solve the problems in groups to exchange their thought and reinforce the correct.                                                    | e                             |
| 2.2      | An ability to explain and apply design concepts in solving problems related to maximal flow optimal distances                               | Asking them formulae, equations used and how can they apply their skills for a specific type of problem and mending the mistakes with explanation                  | e                             |
| 3.0      | Competence                                                                                                                                  |                                                                                                                                                                    |                               |
| 3.1      | Ability to involve group based assignment, to demonstrate so that they share with classmates and teachers, help of internet for solving it. | Making teaching learning two-way communication. Getting students involved to solve problems and asking students did they understand the stability concept clearly. | k                             |
| 3.2      | Group tasks and projects to work with teams to appraise the issues                                                                          | A seminar component related to topic may be considered.  Consultations with the lecturer outside of class hours, according to the scheduled time                   | k                             |

## 2. Assessment Tasks for Students

| # | Assessment task*     | Week Due | Percentage of Total<br>Assessment Score |
|---|----------------------|----------|-----------------------------------------|
| 1 | Quiz 1               | 03       | 05                                      |
| 2 | Assignment/Homework  | 05       | 05                                      |
| 3 | Mid Term 1           | 07       | 20                                      |
| 4 | Quiz 2               | 10       | 05                                      |
| 5 | Mid Term2            | 11       | 20                                      |
| 6 | Assignment/Home work | 12       | 05                                      |
| 7 | Final Exam           | 15       | 40                                      |
|   | Total                |          | 100                                     |

<sup>\*</sup>Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Lecture hours as given in Time Tables : Tuesday 8-8:50 AM, 9-9:50 AM,

Tutorial Tuesday 3 pm 3:50 PM (Class Rooms E 1 and E 3)

Laboratory Tuesday 11 to 12:50 PM

Office hours: :Every day from 10 AM -11 AM

(Office location 044-02-17)

### F. Learning Resources and Facilities

1. Learning Resources

| Required Textbooks                                                                                                                                                             | Production System and Computer Integrated Manufacturing, Groover, M.P. Automation, Prentice Hall. |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Essential References Materials  Modeling and Analysis of Manufacturing Systems, Askin, R.G Standridge, C.R. John Wiley & Sons.  Factory Physics, Hopp and Spearman, Irwin 1996 |                                                                                                   |  |
| Electronic Materials                                                                                                                                                           |                                                                                                   |  |
| Other Learning<br>Materials                                                                                                                                                    | Course related material is provided in Black Board                                                |  |

2. Facilities Required

| Item                                                                                                             | Resources               |
|------------------------------------------------------------------------------------------------------------------|-------------------------|
| Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)                                         | Class Rooms             |
| Technology Resources (AV, data show, Smart Board, software, etc.)                                                | Smart board is provided |
| Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list) |                         |

**G.** Course Quality Evaluation

| Evaluation<br>Areas/Issues | Evaluators | Evaluation Methods          |
|----------------------------|------------|-----------------------------|
| Effectiveness of Teaching  | Students   | Indirect Assessment         |
| CLOs achievement           | Faculty    | Direct/Indirect Assessments |
| Learning Resources         | Students   | Indirect Assessment         |
| Course Contents            | Students   | Indirect Assessment         |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

**Evaluators** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

**H. Specification Approval Data** 

| Council / Committee | Department Council |
|---------------------|--------------------|
| Reference No.       | 1/34/9767          |
| Date                | 25/02/1432 H       |