

Course Specifications

Course Title:	Robotics
Course Code:	ICS 431
Program:	Information and Computer Sciences
Department:	CSI
College:	Science in AL Zulfi
Institution:	Majmaah University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation	
H. Specification Approval Data6	

A. Course Identification

1. Credit hours: 3		
2. Course type		
a. University College Department $$ Others		
b. Required Elective $$		
3. Level/year at which this course is offered: 8 th Level		
4. Pre-requisites for this course (if any): Artificial Intelligence ICS 411		
5. Co-requisites for this course (if any): NA		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	48	80 %
2	Blended	6	10 %
3	E-learning	б	10 %
4	Correspondence		
5	Other		

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours			
Conta	Contact Hours				
1	Lecture	30			
2	Laboratory/Studio	20			
3	Tutorial	10			
4	Others (Presentations & group discussions)				
	Total	60			
Other	Other Learning Hours*				
1	Study	20			
2	Assignments	15			
3	Library	10			
4	Projects/Research Essays/Theses	5			
5	Others (seminars)				
	Total	50			

* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

This course covers all the material needed to understand the principles behind the AI approach to robotics and to program an artificially intelligent robot for applications involving sensing, navigation, planning, and uncertainty.

2. Course Main Objective

Having successfully completed this course, the student will be able to:

- 1. Acquire concepts of robotics in AI.
- 2. Use robots to solve problems.
- 3. Understand robot's control processes, sensors, and algorithms.
- 4. Utilize robots to implement and deploy new applications.

3. Course Learning Outcomes

	Aligned PLOs	
1	Knowledge:	
1.1	List capabilities and limitations of today's state-of-the-art robot systems, including their sensors and the crucial sensor processing that informs those systems	a1
1.2	Integrate sensors, actuators, and software into a robot designed to undertake some task	b3
1.3	Implement fundamental motion planning algorithms within a robot configuration space.	a1, c1
1.4	Compare and contrast at least three strategies for robot navigation within known and/or unknown environments, including their strengths and shortcomings.	c1
2	Skills :	
2.1	Program a robot to accomplish simple tasks using deliberative, reactive, and/or hybrid control architectures	a1, c1
2.2	Group works and learning time management	b3
2.3		
2		
3	Competence:	
3.1		
3.2		
3.3		
3		

C. Course Content

No	No List of Topics	
1	Course information, Introduction to (AI) robotics	4
2	Robotic paradigms and control architectures	8
3	Path and motion planning	8
4	4 Grid and graph based methods	
5	5 Robotic Information Garthering - exploration of unknown environment	
6	6 Randomized sampling-based motion planning Methods	
7	7 Multi-Goal Planning - robotic variants of the TSP	
8 Game theory in robotics		4
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		
	List capabilities and limitations of today's state-of-the-art robot systems,	Lectures,	Written Exam
	including their sensors and the crucial sensor processing that informs those	Lab demonstrations	Homework assignments
1.1	systems	Case studies	Class & lab
		Individual	Activities
		presentations	Quizzes
2.0	Skills		
		Group discussions,	
2.1	Program a robot to accomplish simple tasks using deliberative, reactive,	Lab demonstrations,	Home works and assignments
2.1	and/or hybrid control architectures	Brainstorming	assignments
		Presentations	
3.0	Competence		
3.1			

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	First written mid-term exam	6	10%
2	Second written mid-term exam	12	10%
3	Presentation, class activities, and group discussion	Every week	10%
4	Homework assignments	After Every chapter	10%
5	Practical exam	15	20%
6	Final exam	16	40%
	Total		100%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Office hours: Sun: 1-3, Mon. 12-1, Wed. 12-1 Office call: Sun. 12-1 and Wed 9-10 Email: y.qawqzeh@mu.edu.sa

5

F. Learning Resources and Facilities

Required Textbooks	Introduction to AI Robotics. Robin R. Murphy (2000). ISBN:0262133830	
Essential References Materials	Introduction to Autonomous Mobile Robots, 2ndEdition. Roland Siegwart, Illah R. Nourbakhsh, andDavide Scaramuzza (2011). ISBN: 9780262015356	
Electronic Materials		
Other Learning Materials	Video and presentations that available with the instructor	

1.Learning Resources

2. Facilities Required

Item	Resources		
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classrooms and Laboratories are available at the college of science at Al-Zulfi.		
Technology Resources (AV, data show, Smart Board, software, etc.)	Smart Boards, software, data shows and AV technological resources are available.		
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	N/A		

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	