

STEGANOGRAPHY USING IMAGES

I

Kingdom of Saudi Arabia

Majmaah University
Ministry of Higher Education
Faculty of science
Dept. of Computer Science

STEGANOGRAPHY USING IMAGES

 By

Ghadeer Fahad Alfuhaid

ID:351204862

Supervised by:

T. Hajer brahim

This Project Documentation is submitted in partial fulfillment for the

requirement for the Degree of B.Sc. in

Computer Science and information

April /2018

II STEGANOGRAPHY USING IMAGES

Committee Report Page: This is to certify that the project team has submitted their work

on time and that the Committee has reviewed the content and evaluated the work. The

following is a committee report page example:

.

COMMITTEE REPORT

 We certify that we have read this graduation project report as examining

committee, examined the student in its content and that in our opinion it is

adequate as a project document for B.Sc. in Computer Science and

information.

Supervisor:Examiner1: Examiner2:

Name: Name: Name:

Signature. Signature Signature

.Date: / / Date: / / Date: / /

III STEGANOGRAPHY USING IMAGES

DEDICATION

We all have dreams. But in order to make dreams come into reality, it takes an awful lot of

determination, dedication, self-discipline, and effort.

And without the support of our caring and darling people this project will just stay a

dream.

I like to dedicate this project:

To my beloved mothers, fathers and family, without you the life is tasteless and the road is

endless. You are the most important thing in my world.

To my friends, the ones who made the best memories of my life and the ones who made it

worthy to walk the extra mile while we were about to give up.

IV STEGANOGRAPHY USING IMAGES

ACKNOWLEDGMENT

Firstly, we would like to express our sincere gratitude to our project supervisor T. Hajer

Brahim, for the continuous support of this project and his patient guidance, enthusiastic

encouragement and useful critiques, motivation, and immense knowledge.

We would like to thank the rest of our thesis committee, T.Nora Alneghaimshi, for their

guidance helped, insightful comments and encouragement, also for the hard question which

incited me to widen my research from various perspectives. Our sincere thanks also go to

all the staff members of the department for the valuable information provided by them in

their respective fields. We are grateful for their cooperation during the period of our project.

Finally, we would like to thank our family for supporting us spiritually during working on

the project and our friends who gave us moral support and encouragement throughout the

project study.

V STEGANOGRAPHY USING IMAGES

ABSTRACT

Data hiding is the art of hiding data for various purposes such as; to maintain private data,

secure confidential data and so on. Securely exchange the data over the internet network is

very important issue. So, in order to transfer the data securely to the destination, there are

many approaches like cryptography and steganography. In this project we propose a LSB

& DCT-based steganographic method for hiding the data by applying Least Significant Bit

(LSB) algorithm for embedding the data into the images which is implemented through

the Microsoft .NET framework using the C#.NET.

 Keywords: Least Significant Bit, Discrete Cosine Transform, Steganography.

VI STEGANOGRAPHY USING IMAGES

TABLE OF CONTENTS

DEDICATION ... III

ACKNOWLEDGMENT .. IV

ABSTRACT ...V

TABLE OF CONTENTS .. VI

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATUREX

CHAPTER 1 : INTRODUCTION ... 11

1.1 INTRODUCTION .. 11

1.2 PROJECT DEFENITION ... 11

1.3 STATEMENT OF PROBLEM ... 12

1.4 PROJECT OBJECTIVES ... 12

1.5 ARCHITECTURE & COMPONENTS .. 12

1.6 PROJECT SCOPE .. 13

1.7 STEGANOGRAPHY ARCHITECTURE .. 13

1.7.1 STEGANOGRAPHY TYPES ... 15

1.7.2 STEGANOGRAPHY ALGORITHMS ... 16

1.8 ORGANIZATION CHART AND RESPONSIBILITIES .. 18

1.9 SUMMARY .. 18

CHAPTER 2 : LITERATURE REVIEW ... 19

INTRODUCTION .. 19

2.1 SIMILAR SYSTEMS COMPARISON .. 19

2.2.1 WHITE NOISE STORM ... 19

2.2.2 STEGODOS .. 20

2.2.3 STEGCURE .. 20

2.3 SIMILAR TOOLS COMPARISON ... 21

2.4 RECOMMENDATIONS .. 21

CHAPTER 3 : SYSTEM ANALYSIS ... 23

3.1 INTRODUCTION .. 23

3.2 STAKEHOLDERS ... 23

3.4 NON-FUNCTIONAL REQUIREMENTS ... 25

VII STEGANOGRAPHY USING IMAGES

3.5 SEMI-FORMAL REQUIREMENTS ... 26

3.5.1 GENERAL USE CASE DIAGRAM... 26

3.5.2 ACTORS ... 26

3.5.4 HARDWARE AND SOFTWARE REQUIREMENTS .. 27

3.6 PREDESIGN .. 30

3.7 CONCLUSION... 30

CHAPTER 4 : SYSTEM DESIGN .. 31

4.1 INTRODUCTION .. 31

4.2 STRUCTURAL VIEW ... 31

4.2.1 CLASS DIAGRAM .. 31

4.3 BEHAVIORAL VIEW ... 32

4.3.1 SEQUENCE DIAGRAM .. 32

4.3.2 ACTIVITY DIAGRAM .. 32

4.3.3 DATA FLOW DIAGRAM ... 34

CHAPTER 5 : IMPLEMENTATION & TESTING .. 35

5.1 SCREEN SHOTS OF THE SYSTEM: ... 35

5.2 DEFINITION AND THE GOAL OF TESTING ... 41

5.3 METHODS OF TESTING ... 43

5.3.1 UNIT TESTING .. 43

5.3.2 VALIDATION TESTING .. 43

5.3.3 OUTPUT TESTING.. 44

5.3.4 INTEGRATION TESTING .. 44

5.4 USER ACCEPTANCE TESTING ... 45

5.5 BLACK BOX AND WHITE BOX TESTING ... 45

5.6 TEST CASES ... 46

CHAPTER 6 : CONCLUSION AND FUTURE RECOMMENDATION 47

6.1 CONCLUSIONS .. 47

6.2 FUTURE RECOMMENDATIONS ... 47

REFERENCES .. 48

APPENDICES ... 49

EMBED FILE CODING .. 49

EXTRACT FILE CODING .. 52

VIII STEGANOGRAPHY USING IMAGES

LIST OF TABLES

Table 2-1: Similar tools comparison ... 21

Table 3-1: Stakeholders .. 23

Table 3-2: Use case description – Embedding process ... 24

Table 3-3: Use case description – Extracting process .. 25

Table 5-1: Test Cases .. 46

IX STEGANOGRAPHY USING IMAGES

LIST OF FIGURES

Figure 1-1: Pure Steganography ... 15

Figure 1-2: Secret Key Steganography ... 16

Figure 1-3: Public Key Steganography ... 16

Figure 3-1: Use case diagram ... 26

Figure 4-1: Class diagram ... 31

Figure 4-2: Sequence diagram - .. 32

Figure 4-3: System Activites Activity Diagram ... 33

Figure 4-4: Context Diagram .. 34

Figure 5-1: Embed File - Encryption Phase .. 35

Figure 5-2:Extract File - Decryption Phase .. 36

Figure 5-3:Choose a cover file dialog ... 37

Figure 5-4: Choose a file to embed dialog .. 38

Figure 5-5:Save as dialog .. 38

Figure 5-6:Select Encryption Type Message box ... 39

Figure 5-7: Decrypt file successfully message ... 39

Figure 5-8: Hide file successfully message .. 40

Figure 5-9:Test Information Flow .. 42

X STEGANOGRAPHY USING IMAGES

LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE

LSB Last Significant Bit

DCT Discrete Cosine Transform

STEGANOGRAPHY USING IMAGES

11

CHAPTER 1 : INTRODUCTION

1.1 INTRODUCTION

The growing use of Internet needs to take attention while we send and receive

personal information in a secured manner. For this, there are many approaches that can

transfer the data into different forms so that their resultant data can be understood if it can

be returned back into its original form. This technique is known as encryption. However, a

major disadvantage of this method is that the existence of data is not hidden. If someone

gives enough time then the unreadable encrypted data may be converted into its original

form.

A solution to this problem has already been achieved by using a “steganography”

technique to hide data in a cover media so that other cannot notice it. The characteristics of

the cover media depends on the amount of data that can be hidden, the perceptibility of the

message and its robustness.

In this document, I propose a new system for hiding data stands on many methods

and algorithms for image hiding where I store on data file, called sink file in an image file

called as container image. The primary objective is to use steganography techniques so as

to provide more security and simultaneously using less storage.

1.2 PROJECT DEFENITION

In this project, we propose to develop a system to hiding data by using

"STEGANOGRAPHY" technique as I used many methods stands on some techniques to

have at the back-end a software for hiding data based on hiding algorithms.

After studying the data hiding algorithms we found many ways to hiding data by

using the multimedia files and the main question for me was "Where hidden data hides?" as

we found by our search to know where the data hides it's important to know what is the file

type of the data that it shall be hidden and the cover file type so it is possible to alter graphic

or sound files slightly without losing their overall viability for the viewer and listener. With

audio, you can use bits of file that contain sound not audible to the human ear. With graphic

images, you can remove redundant bits of color from the image and still produce a picture

12 STEGANOGRAPHY USING IMAGES

that looks intact to human eye and is difficult to discern from its original. It is in those bits

that stego hides its data.

By the final of our research we developed a software uses an algorithm, to embed

data in an image; The purposed system is called "Steganography", the aim of this project is

to encrypt the data; the meaning of encrypt is to hide the data over an image using different

steganographic algorithms, in this system LSB is the algorithms that we use to hiding the

data.

1.3 STATEMENT OF PROBLEM

This project addresses the security problem of transmitting the data over internet

network, the main idea coming when we start asking that how can we send a message

secretly to the destination? The science of steganography answers this question. Using

steganography, information can be hidden in carriers such as images, audio files, text files,

videos and data transmissions.

In this document, we proposed some methods and algorithms of an image steganography

system to hide a digital text of a secret message.

1.4 PROJECT OBJECTIVES

In this project we primarily concentrated on the data security issues when sending the

data over the network using steganographic techniques.

The main objectives of our project are to product security tool based on steganography

techniques to hider message carried by stego-media which should not be sensible to human

beings and avoid drawing suspicion to the existence of hidden message.

1.5 ARCHITECTURE & COMPONENTS

In the proposed system we concentrate on finding some algorithm to hide the data

inside images using steganography technique. An algorithm is designed to hide all the data

inputted within the image to protect the privacy of the data. Then, the system is developed

based on the new steganography algorithm.

13 STEGANOGRAPHY USING IMAGES

This proposed system provides the user with two options encrypt and decrypt the

data, in encryption the secret information is hiding in with image file, and on the other side

the decryption is getting the hidden information from the stego image file, and also the user

can show the image size after and before the encryption.

The processes of encryption and decryption of the data file consists of:

• Providing security for the data to be transmitted through network using

steganography.

• Proposing an approach for hiding the data within an image using a steganographic

algorithm which provides better accuracy and quality of hiding.

Microsoft Techniques is used through the .NET framework to extensively analyze the

functions of the LSB algorithm in steganography. Texts and other file formats are encrypted

and embedded into an image file which is then transferred to the destination.

1.6 PROJECT SCOPE

Our project scope is developed for hiding information in any image file to ensure

the safety of exchange the data between different parties and provide better security during

message transmission.

The scope of the project is implementation of steganography tools for hiding

information includes any type of information file and image files and the path where the

user wants to save image and extruded file. We will use LSB technique; the proposed

approach is to use the suitable algorithm for embedding the data in an image files; we will

show a brief of this algorithm that we used to hiding data.

1.7 STEGANOGRAPHY ARCHITECTURE

Steganography is the art of hiding and transmitting data through apparently

innocuous carriers in an effort to conceal the existence of the data, the word Steganography

literally means covered or hiding writing as derived from Greek. Steganography has its

place in security. It is not intended to replace cryptography but supplement it. [1]

Hiding a message with Steganography methods reduces the chance of a message

being detected. If the message is also encrypted then it provides another layer of protection.

14 STEGANOGRAPHY USING IMAGES

Therefore, some Steganographic methods combine traditional Cryptography with

Steganography; the sender encrypts the secret message prior to the overall communication

process, as it is more difficult for an attacker to detect embedded cipher text in a cover. It

has been used through the ages by ordinary people, spies, rulers, government, and armies.

There are many stories about Steganography. [1]

For example, ancient Greece used methods for hiding messages such as hiding In

the field of Steganography, some terminology has developed. The adjectives 'cover',

'embedded', and 'stego' were defined at the information hiding workshop held in Cambridge,

England. The term "cover" refers to description of the original, innocent massage, data,

audio, video, and so on. Steganography is not a new science; it dates back to ancient times.

[1]

Hidden information in the cover data is known as the "embedded" data and

information hiding is a general term encompassing many sub disciplines, is a term around

a wide range of problems beyond that of embedding message in content. The term hiding

here can refer to either making the information undetectable or keeping the existence of the

information secret. [1]

Information hiding is a technique of hiding secret using redundant cover data such

as images, audios, movies, documents, etc. This technique has recently become important

in a number of application areas. For example, digital video, audio, and images are

increasingly embedded with imperceptible marks, which may contain hidden signatures or

watermarks that help to prevent unauthorized copy. It is a performance that inserts secret

messages into a cover file, so that the existence of the messages is not apparent. [1]

Research in information hiding has tremendous increased during the past decade

with commercial interests driving the field. Although the art of concealment “hidden

information” as old as the history, but the emergence of computer and the evolution of

sciences and techniques breathe life again in this art with the use of new ideas, techniques,

drawing on the computer characteristics in the way representation of the data, well-known

computer representation of all data including (Multimedia) is binary these representations

are often the digital levels and areas and change values-aware of slight not aware or felt by

Means sensual of human such as hearing, sight, the advantage use of these properties to hide

data in multimedia by replace the values of these sites to the values of data to be hidden,

15 STEGANOGRAPHY USING IMAGES

taking into account the acceptable limits for the changeover, and not exceeded to prevent

degradation media container with a change becomes aware and felt by human. It should be

noted here that although the art of hidden information come in the beginning of the computer

and its techniques However, the seriousness of the work in the stenography as a stand-alone

science started in 1995. [1]

1.7.1 Steganography Types

 As it is known there is much communication between people and organizations

through the use of the phone, the fax, computer communications, radio, and of course all of

these communications should be secure. There are basically three Steganography types: -

• Pure Steganography.

• Secret key Steganography.

• Public key Steganography.

1.7.1.1 Pure Steganography

Pure Steganography is a Steganography system that doesn't require prior exchange

of some secret information before sending message; therefore, no information is required

to start the communication process: the security of the system thus depends entirely on its

secrecy. [1]

Figure 1-1: Pure Steganography

In most applications, pure Steganography is preferred, since no stego-key must be

shared between the communication partners, although a pure Steganography protocols

don't provide any security if an attacker knows the embedding method. [1]

1.7.1.2 Secret Key Steganography

A secret key Steganography system is similar to a symmetric cipher, where the

sender chooses a cover and embeds the secret message into the cover using a secret key. If

16 STEGANOGRAPHY USING IMAGES

the secret key used in the embedding process is known to the receiver, he can reverse the

process and extract the secret message. [1]

Anyone who doesn't know the secret key should not be able to obtain evidence of

the encoded information. [1]

Figure 1-2: Secret Key Steganography

1.7.1.3 Public Key Steganography

Public key Steganography does not depend on the exchange of a secret key. It

requires two keys, one of them private (secret) and the other public: the public key is stored

in a public database, whereas the public key is used in the embedding process. The secret

key is used to reconstruct the secret message. [1]

Figure 1-3: Public Key Steganography

1.7.2 Steganography Algorithms

For encryption and decryption of text messages using the secret keys steganographic

system uses algorithms known as steganographic algorithms. The mostly used algorithms

for embedding data into images are:

• LSB (Least Significant Bit) Algorithm (Our domain)

• JSteg Algorithm

17 STEGANOGRAPHY USING IMAGES

• F5 Algorithm

1.7.2.1 LSB Algorithm

LSB embedding is the most common technique to embed message bits DCT

coefficients. This method has also been used in the spatial domain where the least significant

bit value of a pixel is changed to insert a zero or a one. A simple example would be to

associate an even coefficient with a zero bit and an odd one with a one-bit value.

In order to embed a message bit in a pixel or a DCT coefficient, the sender increases

or decreases the value of the coefficient/pixel to embed a zero or a one. The receiver then

extracts the hidden message bits by reading the coefficients in the same sequence and

decoding them in accordance with the encoding technique performed on it.

The advantage of LSB embedding is that it has good embedding capacity and the

change is usually visually undetectable to the human eye. If all the coefficients are used, it

can provide a capacity of almost one bit per coefficients using the frequency domain

technique. On the other hand, it can provide a greater capacity for the spatial domain

embedding with almost 1 bit per pixel for each color component. However, sending a raw

image such as a Bitmap (BMP) to the receiver would create suspicion in and of itself, unless

the image file is very small. Fridrich et al. proposed a steganalysis method which provides

a high detection rate for shorter hidden messages [2].

Westfeld and Pfitzmann proposed another steganalysis algorithm for BMP images

where the message length is comparable to the pixel count. Most of the popular formats

today are compressed in the frequency domain and therefore it is not a common practice to

embed bits directly in the spatial domain. Hence, frequency domain embeddings are the

preferred choice for image steganography [2].

18 STEGANOGRAPHY USING IMAGES

1.8 ORGANIZATION CHART AND RESPONSIBILITIES

Figure 1-1 : Organizational chart

1.9 SUMMARY

This chapter gave an introduction about steganography and the meaning of hiding

data; also, the problem research and the importance of Steganography in transmit the data

over the network, for that reason in this document we propose a system to hiding and

embedding the data inside images. Also, it provided what is the purpose and objectives of

our project.

19 STEGANOGRAPHY USING IMAGES

CHAPTER 2 : LITERATURE REVIEW

INTRODUCTION

In this chapter, we will provide an overview of steganography using LSB to hide the files

inside images using the C#.NET technical computing language, it is development

environment is used in a variety of domains, such as image and signal processing, C# offers

many “toolboxes”, and a simple interface to high-performance libraries, one of the most

advantages is a large user community with lots of free code and knowledge sharing and the

ability to process both still images and video. It is popular because of its ease and simplicity.

Also, we will mention some programs that have the same approach it is using an encryption.

Then, we will give the recommendation that help to develop our program.

In this project, use a method of encrypting any data file in an image file. This process of

hiding the data helps to sharing the information with others over the internet network

without any potential risk. The proposed system will help to hide the content with in the

image and encryption of data file with in the image will help to make the document much

securer.

In this research, developed the proposed system by using steganographic algorithm which

is LSB and a technique for hiding capacity and efficiency of hiding the message with in an

image.

2.1 SIMILAR SYSTEMS COMPARISON

2.2.1 White Noise Storm

White Noise Storm is a DOS based tool that could easily embed secret messages

in cover images without any degradation. However, the integrity of the cover image

could be severely affected by noise. The tool uses LSB steganography technique to

embed secret messages in PCX files. The main disadvantage of this tool is the loss of

many bits that can be used to hold information. Additionally, it uses large cover images to

store information that it could be stored in a smaller cover images using other tools [3].

20 STEGANOGRAPHY USING IMAGES

2.2.2 StegoDos

StegoDos is public domain software that only works on 320x200 pixel images with

256 colors. The tool uses LSB steganography technique to hide secret messages. The main

disadvantage of the tool is the size restriction that limits the user’s cover image to

320x200 pixels in-order to have a stego-image that is similar to the original one. Another

disadvantage is the dependence on the end-of- file character to end the message that

does not have any significance work since the message after retrieval appears to

contain garbage [3].

Figure 2-1 : StegoDos

2.2.3 StegCure

StegCure uses three different LSB steganography techniques. In compared with the other

tools, StegCure offers a better security and has a user-friendly functionality with

interactive graphical user interface (GUI) and integrated navigation capabilities. Also, it

can prevent any attacks by restricting the user to one attempt to retrieve the secret

message [4].

21 STEGANOGRAPHY USING IMAGES

Figure 2-2: StegCure

2.3 SIMILAR TOOLS COMPARISON

Table below shows a comparison between our proposed system tool and other image

steganography tools.

 White Noise Storm [3]
StegoDos

[3]

StegCure

[4]

Proposed System

Capacity of

Secret

Message

Limited hiding capacity Limited hiding

capacity
Limited hiding

capacity
Optimum hiding

capacity

Image Size

-

320x200

- Variable size

Image

Format

PCX

Lossless

(Ex. GIF

and
BMP)

GIF

BMP & PNG

cy nEfficie Low Low Medium Medium

Shared Key

No

Yes

No

Yes

Table 2-1: Similar tools comparison

2.4 RECOMMENDATIONS

After studying similar tools to our proposed system LSB substitution is used to

embed the message into an image. It works by adjusting the LSB of the carrier image’s

pixels whereas, the last bit of each byte in the image is changed to a bit of the secret message

that is known standard LSB (1-LSB). Also, use 2-LSB method that differs from the

standard LSB method by allowing more data to be hidden into the cover image. The idea of

this method is almost similar to the standard LSB, except that it replaces the

22 STEGANOGRAPHY USING IMAGES

 2-LSB of each byte of the cover image instead of one bit.

The LSB insertion differs depending on the number of bits in an image. In 8-bit images,

the last bit of each byte in the image is changed to a bit of the secret message. However, it

has a major limitation, which is embedding only small size data into images. While in 24-

bit images, the last bit of each RGB component is changed which allows more data to be

hidden.

23 STEGANOGRAPHY USING IMAGES

CHAPTER 3 : SYSTEM ANALYSIS

3.1 INTRODUCTION

After analyzing the requirements of the task to be performed, the next step is to

analyze the problem and understand its context. The first activity in the phase is studying

the existing system and other is to understand the requirements and domain of the new

system. Both the activities are equally important, but the first activity serves as a basis of

giving the functional specifications and then successful design of the proposed system.

Understanding the properties and requirements of a new system is more difficult and

requires creative thinking and understanding of existing running system is also difficult,

improper understanding of present system can lead diversion from solution.

3.2 STAKEHOLDERS

Stakeholders must be able to make decisions, but need not be human: "An

stakeholder might be a person, a company or organization, a computer program, or a

computer system — hardware, software, or both." Actors are always stakeholders, but not

all stakeholders are actors. The following Table 3.1: Stakeholders and its Description.

Stakeholder Description

User That have major controlling of the whole

systems process and able to access or use

all modules of the application.

Program The Application itself which can

perform the user operation in main

process encrypt (hide image in another

image), decrypt (unhide image from

Stego-image).

Table 3-1: Stakeholders

• Choose an image :Select the picture, open the image, the image review.

• Processing image :typing image in the image box pressing the button for the

treatment process

24 STEGANOGRAPHY USING IMAGES

• Hide image :The program hides image.

A use case is a written description of how users will perform tasks on your website. It

outlines, from a user's point of view, a system's behavior as it responds to a request.

Each use case is represented as a sequence of simple steps, beginning with a user's goal

and ending when that goal is fulfilled.

The use case description of our project as follows;

Actors User

Description The user wants to hide image in another image file

Data Cover image, Image to covered (Message)

Response 1.Select the Embed from the tabs.

2.Select the algorithm type.

3.Select the cover file by click browse until the open file dialog "Choose a

Cover" file appears.

4.From the "Choose a Cover File" dialog choose the cover file and click

open.

5.Select the embed file by click browse until the open file dialog "Choose a

File To Embed" appear.

6.From the " Choose a File To Embed " dialog choose the embed file and

click open.

7.Select the output file by click browse until the save file dialog "Save as .."

appear.

8.Select the path where you want to save the file and type the file name then

click save.

9.Finally click on the embed button to hiding the embed file information

inside the cover file.

10.After the hiding data, message box will appear to tell user the hiding

operation is successfully.

Comments In case the cover image can’t hide the image that user trying to hide the system

will show alert message to the user.

Stimuli Start hiding process by clicking on Embed button.

Table 3-2: Use case description – Embedding process

25 STEGANOGRAPHY USING IMAGES

Actors User

Description The user wants to extract image from stego-image file

Data Stego-Image

Response To start extracting a file you must the following steps:

1.Select the Extract from the tabs.

2.Select the algorithm type.

3.Select the cover file by click browse until the open file dialog "Choose a

Cover" file appears.

4.From the "Choose a Cover File" dialog choose the cover file and click

open.

5.Select the output file by click browse until the save file dialog "Save as .."

appear.

6.Select the path where you want to save the file and type the file name then

click save.

9.Finally click on the extract button to extracting the embed file information.

10.After the extracting data, message box will appear to tell user the

extracting operation is successfully.

Comments The system will show message after the extracting process to let the user know

that the process is end.

Stimuli Start hiding process by clicking on Extract button.

Table 3-3: Use case description – Extracting process

3.4 NON-FUNCTIONAL REQUIREMENTS

• For user interfaces we take in consideration that they should has a standard look and

being user friendly at the same time to make sure that users' attention will not be

distracted and interface to provide more flexibility and scalability.

• The program will be in the English language

• The program must be fast in processing

• The program must to hide the image within the image and then extract image from

the image properly.

• All function must be works well then system will be a high quality

26 STEGANOGRAPHY USING IMAGES

3.5 SEMI-FORMAL REQUIREMENTS

3.5.1 General Use Case Diagram

Figure 3-1: Use case diagram

3.5.2 Actors

An actor in the Unified Modeling Language (UML) "specifies a role played by a

user or any other system that interacts with the subject." "An Actor models a type of role

played by an entity that interacts with the subject (e.g., by exchanging signals and data),

but which is external to the subject."

There are two actors in our application:

1. User

2. Program

A use case is a set of scenarios that describing an interaction between a user and a

system. A use case diagram displays the relationship among actors and use cases.

27 STEGANOGRAPHY USING IMAGES

3.5.4 Hardware and Software Requirements

The execution phase was developed based upon three phases. The different phases

are encryption, decryption and implementation phases. We require few hardware and

software interfaces for implementing these phases.

The software interface which is implemented in this project is done using the Microsoft

.NET running in the Windows environment. The main aim of the project is to improve the

data security when the data is transmitted using the transmission medium. This can be done

by embedding the secret data into the image file and then transmitting the encrypted data

through the transmission medium. Then, the carrier image file is decrypted at the destination

by using the secret key.

For implementing the above procedure, we used the Microsoft .NET framework to create

the steganographic application. The proposed method in this project can be used for both

"encryption" and "decryption" of the message from the digital image.

3.5.4.1 Microsoft .NET

Microsoft .NET is a framework developed by Microsoft in the year 2002. The main aim of

the .NET framework is to build web and user interactive GUI (Graphical User Interface)

applications. The Windows forms web application classes that are used for creating new

windows form based applications. Microsoft .NET is a user friendly language which helps

us build the required web application easily.

• .NET framework acts as a common platform for building, organizing, and running

web applications and web services.

• .NET has common libraries like ASP.NET, ADO.NET and Windows Forms.

• .NET supports multiple languages like C, C#, Visual Basic, Jscript.

• .NET is a user friendly language and is easy to learn compared to other languages

for example JAVA because in .NET the coding is very easier.

• .NET supports additional data sources of ADO.NET like Oracle and ODBC.

28 STEGANOGRAPHY USING IMAGES

• Using .NET platform we can build web applications as required, the applications

are highly secure because it uses access control lists and security identifiers.

• One of the main important sections of Microsoft .NET environment is CLR. The

Common Language Runtime (CLR) is heart to .NET framework.

• CLR is same as JVM (JAVA Virtual Machine) in .NET, .NET program runs only

on platforms that support CLR.

Now, in this project I have chosen Microsoft .net platform for building the windows based

steganographic application. The main components of .NET which used in this project are

Visual C# (Thai, 2003).

3.5.4.2 CLR: (COMMON LANGUAGE RUNTIME)

As mentioned above, the "Common Language Runtime" is an important component of

.NET platform. The CLR handles the object layouts and manages references to objects. It

makes the designing architecture simpler and easier. I used Microsoft Visual C# for

structuring the application. CLR is efficient when C# language is used for writing

programs. The various advantages when the C# language is employed are:

• Complete Object oriented design

• Provides high security and stronger to break the code

• Uses the logics of visual basic and C++ languages

• The syntax is simple is similar to languages C, C++ (Microsoft, 2010, MSDN).

3.5.4.3 Windows Forms

Visual Studio Windows application is supported by the Microsoft .NET frame work and it

allows a rich set of classes so that the Windows application can be built by any .net

programming language like Visual Basic .net and Visual C#.

Here, in this project used visual c# to create the windows based application. The windows

based application differs with Web form application. In windows based application, we

create some type of forms which are used for user interface. These forms are known as

“Windows forms”.

29 STEGANOGRAPHY USING IMAGES

• Using windows forms we can easily drag and drop the controls like radio buttons

and text boxes etc., using the Windows forms designer.

• Windows forms are also known as win forms in which the standard built in

controls can be used.

• By using the custom Graphical User Interface (GUI) controls we can modify the

controls and also add new ones (MSDN, 2010).

3.5.4.4 VISUAL C#

Visual C# is the one of the component in Microsoft Visual studio which works similar to

Visual basic. Creating applications using Visual C# is easier compared to the JAVA.

• In order to create the application, we need to use the designer tool and tool box so

that required tool like radio button, text boxes etc., can be placed.

• After designing the next phase is to relate them with specified functions. This can

be done using visual C# coding.

• The coding can be done by double clicking in the elements on the designer tool.

• The program or code which is written using C# language is saved with “.CS”

extension.

• The code can be compiled using “Debug” option. When we click on debug option

the .NET architecture creates the class file.

• After creation of class file, Common Language Runtime (CLR) converts the class

file into the machine language that is compatible with the hardware since CLR

supports cross-language integration.

• The code as such can be compiled on any other operating system.

• Microsoft visual studio provides a bunch of tools for creating Windows as well as

web applications.

30 STEGANOGRAPHY USING IMAGES

3.6 PREDESIGN

Figure 3.3: Embed File - Encryption Phase (Main interface)

3.7 CONCLUSION

In this chapter, we have described the introduction about system analysis and design.

We discuss the result of software requirements by functional requirement, non- functional

requirement. Furthermore, we also explained use case diagram which consists of two

description actor and use case. Finally, we describe the architecture design phase through

system design.

31 STEGANOGRAPHY USING IMAGES

CHAPTER 4 : SYSTEM DESIGN

4.1 INTRODUCTION

Software design is a process of problem-solving and planning for a software

solution. After the purpose and specifications of software is determined, software

developers will design or employ designers to develop a plan for a solution. It includes

construction component and algorithm implementation issues which shown in as the

architectural view. During this chapter we will introduce some principles that are

considered through the Software design.

4.2 STRUCTURAL VIEW

Structural diagrams are used to describe the relationships between classes. Structural

view can be described using class diagram.

4.2.1 Class Diagram

A class diagram is a picture for describing generic descriptions of possible systems.

Class diagrams and collaboration diagrams are alternate representations of object models.

Class diagrams contain classes and object diagrams contain objects, but it is possible to mix

classes and objects when dealing with various kinds of metadata, so the separation is not

rigid.

Figure 4-1: Class diagram

32 STEGANOGRAPHY USING IMAGES

Class diagrams are more prevalent than object diagrams. Normally you will build

class diagrams plus occasional object diagrams illustrating complicated data structures or

message-passing structures.

4.3 BEHAVIORAL VIEW

As we mentioned previously that activity diagram, and sequence diagram provide

the behavioral view for our project. Behavioral diagrams are used to describe the interaction

between the actors and the system. All the activities that are performed by the actors and

the system are introduced in some way.

4.3.1 Sequence Diagram

A sequence diagram shows object interactions arranged in time sequence. It depicts

the objects and classes involved in the scenario and the sequence of messages exchanged

between the objects needed to carry out the functionality of the scenario.

Figure 4-2: Sequence diagram -

4.3.2 Activity Diagram

Activity diagrams are graphical representations of workflows of stepwise activities

and actions with support for choice, iteration and concurrency. In the Unified Modelling

Language, activity diagrams can be used to describe the business and operational step-by-

33 STEGANOGRAPHY USING IMAGES

step workflows of components in a system. An activity diagram shows the overall flow of

processes.

Figure 4-3: System Activites Activity Diagram

34 STEGANOGRAPHY USING IMAGES

4.3.3 Data Flow Diagram

A data flow diagram (DFD) is a graphical representation of the "flow" of data

through an information system, modeling its process aspects. Often they are a preliminary

step used to create an overview of the system which can later be elaborated. DFDs

can also be used for the visualization of data processing (structured design).

A DFD shows what kinds of information will be input to and output from the system, where

the data will come from and go to, and where the data will be stored.

It does not show information about the timing of processes, or information about whether

processes will operate in sequence or in parallel.

Figure 4-4: Context Diagram

35 STEGANOGRAPHY USING IMAGES

CHAPTER 5 : IMPLEMENTATION & TESTING

5.1 SCREEN SHOTS OF THE SYSTEM:

Figure 5-1: Embed File - Encryption Phase

To start hiding a file you must the following steps:

1.Select the Embed from the tabs.

2.Select the algorithm type.

3.Select the cover file by click browse until the open file dialog "Choose a Cover" file

appears.

4.From the "Choose a Cover File" dialog choose the cover file and click open.

36 STEGANOGRAPHY USING IMAGES

5.Select the embed file by click browse until the open file dialog "Choose a File To

Embed" appear.

6.From the " Choose a File To Embed " dialog choose the embed file and click open.

7.Select the output file by click browse until the save file dialog "Save as .." appear.

8.Select the path where you want to save the file and type the file name then click save.

9.Finally click on the embed button to hiding the embed file information inside the cover

file.

10.After the hiding data, message box will appear to tell user the hiding operation is

successfully.

Figure 5-2:Extract File - Decryption Phase

To start extracting a file you must the following steps:

1.Select the Extract from the tabs.

37 STEGANOGRAPHY USING IMAGES

2.Select the algorithm type.

3.Select the cover file by click browse until the open file dialog "Choose a Cover" file

appears.

4.From the "Choose a Cover File" dialog choose the cover file and click open.

5.Select the output file by click browse until the save file dialog "Save as .." appear.

6.Select the path where you want to save the file and type the file name then click save.

9.Finally click on the extract button to extracting the embed file information.

10.After the extracting data, message box will appear to tell user the extracting operation

is successfully.

Figure 5-3:Choose a cover file dialog

From this screen you must select the cover file by choose the right path and select the file

and then click open button.

38 STEGANOGRAPHY USING IMAGES

Figure 5-4: Choose a file to embed dialog

From this screen you must select the embed file by choose the right path and select the file

and then click open button.

Figure 5-5:Save as dialog

From this screen you must select the right path and type the file name to save the file in

the selected path then click save button.

39 STEGANOGRAPHY USING IMAGES

Figure 5-6:Select Encryption Type Message box

Select encryption type message box to notify the user of select the encryption type from

the list.

Figure 5-7: Decrypt file successfully message

Successfully hide file message box to notify the user of the extract operation is

successfully.

40 STEGANOGRAPHY USING IMAGES

Figure 5-8: Hide file successfully message

Successfully hide file message box to notify the user of the embed operation is

successfully.

41 STEGANOGRAPHY USING IMAGES

5.2 DEFINITION AND THE GOAL OF TESTING

Process of creating a program consists of the following phases: 1. defining a problem; 2.

designing a program; 3. building a program; 4. analyzing performances of a program, and

5. final arranging of a product.

According to this classification, software testing is a component of the third phase, and

means checking if a program for specified inputs gives correctly and expected results. So

the main aim of testing is to analyze the performance and to evaluate the errors that occur

when the program is executed with different input sources and running in different operating

environments.

Software testing (Figure 3.1) is an important component of software quality assurance, and

many software organizations are spending up to 40% of their resources on testing. For life-

critical software (e.g., flight control) testing can be highly expensive. Because of that, many

studies about risk analysis have been made. This term means the probability that a software

project will experience undesirable events, such as schedule delays, cost overruns, or

outright cancellation.

There are a many definitions of software testing, but one can shortly define that as: A

process of executing a program with the goal of finding errors. So, testing means that one

inspects behavior of a program on a finite set of test cases (a set of inputs, execution

preconditions, and expected outcomes developed for a particular objective, such as to

exercise a particular program path or to verify compliance with a specific requirement) for

which valued inputs always exist.

In practice, the whole set of test cases is considered as infinite, therefore theoretically there

are too many test cases even for the simplest programs. In this case, testing could require

months and months to execute. So, how to select the most proper set of test cases? In

practice, various techniques are used for that, and some of them are correlated with risk

analysis, while others with test engineering expertise.

42 STEGANOGRAPHY USING IMAGES

Testing is an activity performed for evaluating software quality and for improving it. Hence,

the goal of testing is systematical detection of different classes of errors (error can be

defined as a human action that produces an incorrect result) in a minimum amount of time

and with a minimum amount of effort.

Figure 5-9:Test Information Flow

There are different types of approaches for testing a .NET framework based application.

The types of testing are:

• Unit testing

• Validation testing

• Integration testing

• User acceptance testing

• Output testing

43 STEGANOGRAPHY USING IMAGES

• Black box and white box testing.

5.3 METHODS OF TESTING

5.3.1 Unit Testing

Unit testing is the approach of taking a small part of testable application and executing it

according to the requirements and testing the application behavior. Unit testing is used for

detecting the defects that occur during execution (MSDN, 2010).

When an algorithm is executed, the integrity should be maintained by the data structures.

Unit testing is made use for testing the functionality of each algorithm during execution.

Unit testing can be used in the bottom up test approach which makes the integration test

much easier. Unit testing reduces the ambiguity in the units. Unit testing uses regression

testing, which makes the execution simpler. Using regression testing, the fault can be easily

identified and fixed.

In this project, the purposed system of hiding the data using different phases likes

encryption, decryption, etc. So, for getting the correct output all the functions that are used

are executed and tested at least once making sure that all the control paths, error handling

and control structures are in proper manner.

Unit testing has its applications for extreme programming, testing unit frame works and

good support for language level unit testing.

5.3.2 Validation Testing

Validation is the process of finding whether the product is built correct or not. The software

application or product that is designed should fulfill the requirements and reach the

expectations set by the user. Validation is done while developing or at the final stage of

development process to determine whether it is satisfies the specified requirements of user.

44 STEGANOGRAPHY USING IMAGES

Using validation test the developer can qualify the design, performance and its operations.

Also the accuracy, repeatability, selectivity, Limit of detection and quantification can be

specified using Validation testing (MSDN, 2010).

5.3.3 Output Testing

After completion of validation testing the next process is output testing. Output testing is

the process of testing the output generated by the application for the specified inputs. This

process checks weather the application is producing the required output as per the user's

specification or not.

The output testing can be done by considering mainly by updating the test plans, the

behavior of application with different type of inputs and with produced outputs, making the

best use of the operating capacity and considering the recommendations for fixing the issues

(MSDN, 2010).

5.3.4 Integration Testing

Integration testing is an extension to unit testing, after unit testing the units are integrated

with the logical program. The integration testing is the process of examining the working

behavior of the particular unit after embedding with program. This procedure identifies the

problems that occur during the combination of units.

The integration testing can be commonly done in three approaches:

• Top-down approach

• Bottom-up approach

• Umbrella approach

5.3.4.1 Top-down approach:

In the top-down approach the highest level module should be considered first and integrated.

This approach makes the high level logic and data flow to test first and reduce the necessity

of drivers.

One disadvantage with top-down approach is its poor support and functionality is limited

(MSDN, 2010).

45 STEGANOGRAPHY USING IMAGES

5.3.4.2 Bottom-up approach:

Bottom-up approach is opposite to top-down approach. In this approach, the lowest level

units are considered and integrated first. Those units are known as utility units. The utility

units are tested first so that the usage of stubs is reduced. The disadvantage in this method

is that it needs the respective drivers which make the test complicated, the support is poor

and the functionality is limited (MSDN, 2010).

5.3.4.3 Umbrella approach:

The third approach is umbrella approach, which makes use of both the top - bottom and

bottom - top approaches. This method tests the integration of units along with its functional

data and control paths. After using the top - bottom and bottom-top approaches, the outputs

are integrated in top - bottom manner.

The advantage of this approach is that it provides good support for the release of limited

functionality as well as minimizing the needs of drivers and hubs. The main disadvantage

is that it is less systematic than the other two approaches (MSDN, 2010).

5.4 USER ACCEPTANCE TESTING

User acceptance testing is the process of obtaining the confirmation from the user that the

system meets the set of specified requirements. It is the final stage of project; the user

performs various tests during the design of the applications and makes further modifications

according to the requirements to achieve the final result.

The user acceptance testing gives the confidence to the clients about the performance of

system.

5.5 BLACK BOX AND WHITE BOX TESTING

Black box testing is the testing approach which tells us about the possible combinations for

the end-user action. Black box testing doesn't need the knowledge about the interior

connections or programming code. In the black box testing, the user tests the application by

giving different sources and checks whether the output for the specified input is appropriate

or not.

46 STEGANOGRAPHY USING IMAGES

White box testing is also known as "glass box" or "clear box" or "open box" testing. It is

opposite to the black box testing. In the white box testing, we can create test cases by

checking the code and executing in certain intervals and know the potential errors. The

analysis of the code can be done by giving suitable inputs for the specified applications and

using the source code for the application blocks.

The limitation with the white box testing is that the testing only applies to unit testing,

system testing and integration testing (MSDN, 2010).

These are the different testing approaches that can be used for testing the application which

is developed using Microsoft Visual studio (.NET).

5.6 TEST CASES

STEP TEST

CONDITION

ACTION EXPECTED

RESULT

ACTUAL

RESULT

1. Embed File

1.1 Select Cover

Image

Click Check browse

images

Done

1.2 Select Embed

Image

Click Check browse

images

Done

1.3 Select Output

Image

Click Check browse

images

Done

1.4 Click Embed

Button

Click Check embed

function

Done

2. Extract

2.1 Select Cover

Image

Click Check browse

images

Done

2.2 Select Output

Image

Click Check browse

images

Done

2.3 Click Extract

Button

Click Check extract

function

Done

Table 5-1: Test Cases

47 STEGANOGRAPHY USING IMAGES

CHAPTER 6 : CONCLUSION AND FUTURE RECOMMENDATION

6.1 CONCLUSIONS

Although only some of the main image steganographic techniques were discussed in this

document, one can see that there exists a large selection of approaches to hiding information

in images. All the major image file formats have different methods of hiding messages, with

different strong and weak points respectively. Where one technique lacks in payload

capacity, the other lacks in robustness. For example, the patchwork approach has a very

high level of robustness against most type of attacks, but can hide only a very small amount

of information.

Least significant bit (LSB) in both BMP and GIF makes up for this, but both approaches

result in suspicious files that increase the probability of detection when in the presence of a

warden.

The proposed approach in this project uses a new steganographic approach called image

steganography. The application creates a stego image in which the personal data is

embedded inside the cover file image.

 Used the Least Significant Bit algorithm in this project for developing the application which

is faster and reliable and compression ratio is moderate compared to other algorithms.

6.2 FUTURE RECOMMENDATIONS

The major limitation of the application is designed for images cover files. It accepts only

images as a carrier file.

The future work on this project is to improve the compression ratio of the image to the text.

This project can be extended to a level such that it can be used for the different types of

multimedia files.

48 STEGANOGRAPHY USING IMAGES

REFERENCES

[1] Rosziati Ibrahim and Teoh Suk Kuan, Steganography Imaging System (SIS): Hiding

Secret Message inside an Image

http://www.iaeng.org/publication/WCECS2010/WCECS2010_pp144-148.pdf

[2] Zaidoon Kh. AL-Ani, A.A.Zaidan, B.B.Zaidan and Hamdan.O.Alanazi, Overview: Main Fundamentals for

Steganography

 http://arxiv.org/ftp/arxiv/papers/1003/1003.4086.pdf

[3] Bere Sachin Sukhadeo, User Aware Image Tag Refinement

http://www.ijcsmr.org/eetecme2013/paper19.pdf

[4] Youssef Bassil , A Simulation Model for the Waterfall Software Development Life Cycle, 2011

http://arxiv.org/ftp/arxiv/papers/1205/1205.6904.pdf

[5] ANALYSIS MODEL WATERFALL MODEL

http://www.scribd.com/doc/87322736/Analysis-Model-Waterfall-Model

[6] Data Flow Diagram Symbols

http://www.idi.ntnu.no/~sif8035/pdf/flesn/notation.pdf

[7] Donald S. Le Vie, Jr., Understanding Data Flow Diagrams

http://ratandon.mysite.syr.edu/cis453/notes/DFD_over_Flowcharts.pdf

[8] B. Beizer, Software Testing Techniques. London: International Thompson

Computer Press, 1990.

[9] B. Beizer, Black Box Testing. New York: John Wiley & Sons, Inc., 1995.

[10] A. Bertolino, "Chapter 5: Software Testing," in IEEE SWEBOK Trial Version

1.00, May 2001.

[11] Testing Overview and Black-Box Testing Techniques

http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf

[12] Jovanović, Irena , Software Testing Methods and Techniques,

http://www.internetjournals.net/journals/tir/2009/January/Paper%2006.pdf

 [13] Hong Cai1 and Sos S.Agaian2, BREAKING F5 IN COLOR IMAGES WITH LOW EMBEDDING RATES

[14] Yao Wang, DCT and Transform Coding

[15] N. F. Johanson and S.Jajodia. “Exploring Steganography: Seeing The Unseen,” IEEE CJ, February 1998, pp. 26-43.

 [16] L. Y. Por et al., “StegCure: A Comprehensive Steganographic Tool Using Enhanced LSB

Scheme,” WSEAS Transactions on Computers, vol. 7, no. 8, August 2008, pp. 1309-1318.

http://www.iaeng.org/publication/WCECS2010/WCECS2010_pp144-148.pdf
http://arxiv.org/ftp/arxiv/papers/1003/1003.4086.pdf
http://www.ijcsmr.org/eetecme2013/paper19.pdf
http://arxiv.org/ftp/arxiv/papers/1205/1205.6904.pdf
http://www.scribd.com/doc/87322736/Analysis-Model-Waterfall-Model
http://www.idi.ntnu.no/~sif8035/pdf/flesn/notation.pdf
http://ratandon.mysite.syr.edu/cis453/notes/DFD_over_Flowcharts.pdf
http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf
http://www.internetjournals.net/journals/tir/2009/January/Paper%2006.pdf

49 STEGANOGRAPHY USING IMAGES

APPENDICES

EMBED FILE CODING

#region Embedded the file into the cover by using Hiding methos
 public static Bitmap EncryptLayer(Bitmap OriginalBitmapPicture, long
startPosition, long endPosition, bool blnHideFileNameData, long lngFileNameLength,
byte[] BytesOfHiddenFileData, string fileName, long lngfileSize)
 {
 // Get the height and width of the original bitmap picture
 int height = OriginalBitmapPicture.Height;
 int width = OriginalBitmapPicture.Width;

 // Declare the index of the LSB as conistant
 const int LSB = 7;

 // Save the original bitmap image in another bitmap picture called
StegoBitmapPicture to make the updates
 Bitmap StegoBitmapPicture = OriginalBitmapPicture;

 // Declare the variables i, j to use them for get the pixels of the
image
 int i = 0, j = 0;

 // ArrStegoData to store the binary value of every byte of the char of
the file that we want to hide
 bool[] ArrStegoData = new bool[8];

 // blnArrOfRedByte, blnArrOfGreenByte, blnArrOfBlueByte to store
boolean values of the binaries of the RGB of the original file image
 bool[] blnArrOfRedByte = new bool[8];
 bool[] blnArrOfGreenByte = new bool[8];
 bool[] blnArrOfBlueByte = new bool[8];

 // pixel to get the values of the original image pixel
 Color pixel = new Color(); // Pixel (R,G,B) = (0-255, 0-255, 0-255)

 // ArrOfRedByte, ArrOfGreenByte, ArrOfBlueByte to store the binary
values of the RGB of the original image pixel
 byte ArrOfRedByte, ArrOfGreenByte, ArrOfBlueByte;

 bool blnCheckIfFinishedHidingTheFileName = false;

 // Check if hide the file name data are stored or not - if it hided
then the value must be false
 // else if the value is true then start hidding the file name data
 if (blnHideFileNameData)
 {
 int intFileNameCharIndex = 0;
 int intFileDataCharIndex = 0;

 for (i = 0; i < height; i++)
 for (j = 0; j < width; j++) // we multiply by 3 not * because
we store in byte everytime

50 STEGANOGRAPHY USING IMAGES

 {

 //Put here we shall take in our considration the picture
length if we arrived to the last pixel then

 if (intFileNameCharIndex == lngFileNameLength) // finished
hiding the file information
 {
 blnCheckIfFinishedHidingTheFileName = true;
 }

 if (blnCheckIfFinishedHidingTheFileName == false)
 {

 // Convert the byte for every char of the file name

ConvertByteToBoolean((byte)fileName[intFileNameCharIndex], ref ArrStegoData);

 // Get the pixel of the input image
 pixel = OriginalBitmapPicture.GetPixel(j, i);

 //Get the values of RGB of the pixel
 ArrOfRedByte = pixel.R;
 ArrOfGreenByte = pixel.G;
 ArrOfBlueByte = pixel.B;

 // Convert the bytes of the RGB colors to binary values
 ConvertByteToBoolean(ArrOfRedByte, ref
blnArrOfRedByte);
 ConvertByteToBoolean(ArrOfGreenByte, ref
blnArrOfGreenByte);
 ConvertByteToBoolean(ArrOfBlueByte, ref
blnArrOfBlueByte);

 // Now we want to store the 8 bits of the file name
that we want to hide by changing the LSB of every color byte
 // but on every pixel we can store 3 bits of the byte
 // so here to save the sorting we must divide the store
process on three stages
 // first store first three values from j = 0 to j = 2
 // second the next three bits from j =3 to j=5
 // finally the final two bits on j =6 and 7

 if (j % 3 == 0)
 {
 blnArrOfRedByte[LSB] = ArrStegoData[0];
 blnArrOfGreenByte[LSB] = ArrStegoData[1];
 blnArrOfBlueByte[LSB] = ArrStegoData[2];
 }
 else if (j % 3 == 1)
 {
 blnArrOfRedByte[LSB] = ArrStegoData[3];
 blnArrOfGreenByte[LSB] = ArrStegoData[4];
 blnArrOfBlueByte[LSB] = ArrStegoData[5];
 }
 else
 {
 blnArrOfRedByte[LSB] = ArrStegoData[6];

51 STEGANOGRAPHY USING IMAGES

 blnArrOfGreenByte[LSB] = ArrStegoData[7];
 intFileNameCharIndex++;
 }

 // Get the new updated pixel of the image after hide
the file name
 Color newPixelColor =
Color.FromArgb((int)ConvertBooleanToByte(blnArrOfRedByte),
(int)ConvertBooleanToByte(blnArrOfGreenByte),
(int)ConvertBooleanToByte(blnArrOfBlueByte));
 StegoBitmapPicture.SetPixel(j, i, newPixelColor);
 }
 else
 {
 if (intFileDataCharIndex ==
BytesOfHiddenFileData.Length) // finished hiding the file information
 {
 goto endPosition;
 }

ConvertByteToBoolean((byte)BytesOfHiddenFileData[intFileDataCharIndex], ref
ArrStegoData);

 pixel = OriginalBitmapPicture.GetPixel(j, i);

 ArrOfRedByte = pixel.R;
 ArrOfGreenByte = pixel.G;
 ArrOfBlueByte = pixel.B;

 ConvertByteToBoolean(ArrOfRedByte, ref
blnArrOfRedByte);
 ConvertByteToBoolean(ArrOfGreenByte, ref
blnArrOfGreenByte);
 ConvertByteToBoolean(ArrOfBlueByte, ref
blnArrOfBlueByte);

 if (j % 3 == 0)
 {
 blnArrOfRedByte[LSB] = ArrStegoData[0];
 blnArrOfGreenByte[LSB] = ArrStegoData[1];
 blnArrOfBlueByte[LSB] = ArrStegoData[2];
 }
 else if (j % 3 == 1)
 {
 blnArrOfRedByte[LSB] = ArrStegoData[3];
 blnArrOfGreenByte[LSB] = ArrStegoData[4];
 blnArrOfBlueByte[LSB] = ArrStegoData[5];
 }
 else
 {
 blnArrOfRedByte[LSB] = ArrStegoData[6];
 blnArrOfGreenByte[LSB] = ArrStegoData[7];
 intFileDataCharIndex++;
 }
 Color newPixelColor =
Color.FromArgb((int)ConvertBooleanToByte(blnArrOfRedByte),

52 STEGANOGRAPHY USING IMAGES

(int)ConvertBooleanToByte(blnArrOfGreenByte),
(int)ConvertBooleanToByte(blnArrOfBlueByte));
 StegoBitmapPicture.SetPixel(j, i, newPixelColor);

 }
 }
 }
 endPosition:

 //int initm = j;

 long lngtempFileSize = lngfileSize, lngtempFileNameSize =
lngFileNameLength;

 ArrOfRedByte = (byte)(lngtempFileSize % 100);
 lngtempFileSize /= 100;
 ArrOfGreenByte = (byte)(lngtempFileSize % 100);
 lngtempFileSize /= 100;
 ArrOfBlueByte = (byte)(lngtempFileSize % 100);

 Color flenColor = Color.FromArgb(ArrOfRedByte, ArrOfGreenByte,
ArrOfBlueByte);
 StegoBitmapPicture.SetPixel(width - 1, height - 1, flenColor);

 ArrOfRedByte = (byte)(lngtempFileNameSize % 100);
 lngtempFileNameSize /= 100;
 ArrOfGreenByte = (byte)(lngtempFileNameSize % 100);
 lngtempFileNameSize /= 100;
 ArrOfBlueByte = (byte)(lngtempFileNameSize % 100);

 Color fnlenColor = Color.FromArgb(ArrOfRedByte, ArrOfGreenByte,
ArrOfBlueByte);
 StegoBitmapPicture.SetPixel(width - 2, height - 1, fnlenColor);

 return StegoBitmapPicture;
 }
 #endregion

EXTRACT FILE CODING

#region Get the embeded file from the cover file by using the unhiding method
 public static void DecryptLayer(int width, int height, Bitmap
StegoBitmapPicture, string strOutputFileName)
 {

 int i, j = 0;

 bool[] ArrStegoData = new bool[8];

 bool[] blnArrOfRedByte = new bool[8];
 bool[] blnArrOfGreenByte = new bool[8];
 bool[] blnArrOfBlueByte = new bool[8];

 byte ArrOfRedByte, ArrOfGreenByte, ArrOfBlueByte;

53 STEGANOGRAPHY USING IMAGES

 Color pixel = new Color();
 // Get the Stored file size that we saved in the encryption on the
pixel (width - 1, height - 1)
 pixel = StegoBitmapPicture.GetPixel(width - 1, height - 1);
 long fSize = pixel.R + pixel.G * 100 + pixel.B * 10000;

 // Get the Stored file name size that we saved in the encryption on the
pixel (width - 2, height - 1)
 pixel = StegoBitmapPicture.GetPixel(width - 2, height - 1);
 long fNameSize = pixel.R + pixel.G * 100 + pixel.B * 10000;

 byte[] res = new byte[fSize];

 string resFName = "";
 byte temp;

 int intFileNameCharIndex = 0;
 int intFileDataCharIndex = 0;

 bool blnCheckIfFinishedHidingTheFileName = false;
 bool blnCheckIfFinishedHidingTheFileData = false;

 //Read file name:
 for (i = 0; i < height; i++)
 for (j = 0; j < width; j++)
 {
 pixel = StegoBitmapPicture.GetPixel(j, i);

 if (intFileNameCharIndex == fNameSize)
 {
 blnCheckIfFinishedHidingTheFileName = true;
 }

 if (blnCheckIfFinishedHidingTheFileName == false)
 {
 ArrOfRedByte = pixel.R;
 ArrOfGreenByte = pixel.G;
 ArrOfBlueByte = pixel.B;

 ConvertByteToBoolean(ArrOfRedByte, ref blnArrOfRedByte);
 ConvertByteToBoolean(ArrOfGreenByte, ref
blnArrOfGreenByte);
 ConvertByteToBoolean(ArrOfBlueByte, ref blnArrOfBlueByte);

 if (j % 3 == 0)
 {
 ArrStegoData[0] = blnArrOfRedByte[7];
 ArrStegoData[1] = blnArrOfGreenByte[7];
 ArrStegoData[2] = blnArrOfBlueByte[7];
 }
 else if (j % 3 == 1)
 {
 ArrStegoData[3] = blnArrOfRedByte[7];
 ArrStegoData[4] = blnArrOfGreenByte[7];
 ArrStegoData[5] = blnArrOfBlueByte[7];
 }

54 STEGANOGRAPHY USING IMAGES

 else
 {
 ArrStegoData[6] = blnArrOfRedByte[7];
 ArrStegoData[7] = blnArrOfGreenByte[7];
 temp = ConvertBooleanToByte(ArrStegoData);
 resFName += (char)temp;
 intFileNameCharIndex++;
 }
 }
 else
 {
 if (intFileDataCharIndex == fSize) // finished hiding the
file information
 {
 blnCheckIfFinishedHidingTheFileName = true;
 goto endPosition;
 }

 if (blnCheckIfFinishedHidingTheFileData == false)
 {
 pixel = StegoBitmapPicture.GetPixel(j, i);

 ArrOfRedByte = pixel.R;
 ArrOfGreenByte = pixel.G;
 ArrOfBlueByte = pixel.B;

 ConvertByteToBoolean(ArrOfRedByte, ref
blnArrOfRedByte);
 ConvertByteToBoolean(ArrOfGreenByte, ref
blnArrOfGreenByte);
 ConvertByteToBoolean(ArrOfBlueByte, ref
blnArrOfBlueByte);

 if (j % 3 == 0)
 {
 ArrStegoData[0] = blnArrOfRedByte[7];
 ArrStegoData[1] = blnArrOfGreenByte[7];
 ArrStegoData[2] = blnArrOfBlueByte[7];
 }
 else if (j % 3 == 1)
 {
 ArrStegoData[3] = blnArrOfRedByte[7];
 ArrStegoData[4] = blnArrOfGreenByte[7];
 ArrStegoData[5] = blnArrOfBlueByte[7];
 }
 else
 {
 ArrStegoData[6] = blnArrOfRedByte[7];
 ArrStegoData[7] = blnArrOfGreenByte[7];
 temp = ConvertBooleanToByte(ArrStegoData);
 res[intFileDataCharIndex] = temp;
 intFileDataCharIndex++;
 }
 }
 }
 }

55 STEGANOGRAPHY USING IMAGES

 endPosition:

 File.WriteAllBytes(strOutputFileName + resFName, res);

 }
 #endregion

