

MAJMAAH UNIVERSITY

COLLEGE OF SCIENCE

DEPT. OF COMPUTER SCIENCE & INFORMATION

Pilgrim Tracing System

BY

Hessa Jasir ALshalani

351205118

Supervised by

Dr. Sarah Mustafa Eljack

A REPORT SUBMITTED TO

UNIVERSITY OF MAJAMAAH

In partial fulfillment of the requirements

For the degree of

BACHELOR OF COMPUTER AND INFORMATION SCIENCE

1439-1440 AH

Abstract:

Pilgrim tracing system it is an Android application for the pilgrim and supervisor

campaign

Making it easy for them to know each other’s place.

a survey was conducted and its results were many including the loss of pilgrim in Hajj

and do not know Mansak places.

This application facilitates communication with the supervisor, knowing each other’s

place and Tracing each other and can search for the Mansak places.

Keyword: pilgrim, track, loss, place.

 مقدمه:

 التطبيق يقوم بعده خدمات. .نظام تتبع الحاج تطبيق اندرويد للحاج ومشرف الحمله في الحج

يمكن للمشرف معرفه اماكن الحجاج و ارشادهم للطريق الصحيح او الذهاب له ويمكن للحاج

 ايضاً معرفه مكان المشرف.

 ف اذا استدعى الامر.مكن للحاج الاتصال المباشر بالمشركما ي

 يمكن للحاج البحث عن مكان منسك محدد عن طريق الخريطة داخل التطبيق.

i

Dedication:

To the light that illuminates my path of success … My Father

To who taught me to endure no matter how the circumstances change… My Mother

To all who taught me and illuminated the way for me

ii

Acknowledgment:

The success and final outcome of this project required a lot of guidance and

assistance from many people and I am extremely privileged to have got this all along

the completion of my project.

All that I have done is only due to such supervision and assistance and I would not

forget to thank them.

I respect and thank D. Sara Mustafa Eljack

To provide all the support and guidance that made me complete the project as

required. I am grateful to her for her support and guidance.

iii

MAJMAAH UNIVERSITY,

COLLEGE OF SCIENCE AL ZULFI,

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION

(CERTIFICATE BY STUDENT)

This is to certify that the project titled “Pilgrim Tracing System” submitted by me

(Hessa jaser AlShalani, 351205118) under the supervision of Dr.Sarah M. Eljack for

award of Bachelor degree of the Majmaah University carried out during the Semester

1, 2018-19 embodies my original work.

Signature in full: ----------------------------

Name in block letters: Hessa Jasir ALShalani

 Student ID: 351205118

Date: 21/11/2018

iv

Table of contents:

Abstract .…………………………………………………………………......…….…..i

Dedication ………………………………………………………...………………......ii

Acknowledgment ………………………………………………..…………………...iii

Certificate ……... ……………………………………………….……………………iv

Table of Content………………………………………………….……….…………...v

List of figure……………………………………………………………….................vii

List of Table …………………………………………………………………….……ix

1 introduction:

1.1 Introduction ……………………….………………………….……………….......1

1.1.1 Abstract system description ………………………………….…………………2

1.2 problem definition …………………………………………….……...…………2

1.2.1 Goals …………………………………………………………..…...…...............3

1.2.2 Objectives …………………………………………………….…………………3

1.2.3 Critical success factors ………………………………………..….……..............3

1.2.4 Organization chart and responsibilities ………………………………...............4

1.3 General rules ……………………………………………………….….…………4

1.4 literature survey……………………………………………………..……………..5

1.5 feasibility study …………………………………………………….…………......9

2 System analysis:

 2.1.1 Introduction ………………………………………………..……….................11

2.1.2 description of DFD ………………………………………………..……….....11

2.2.1 Context diagram …………………………………………………….................12

2.2.2 DFD level0 ………………………………………………………….................13

2.2.3 Detailed DFD …………………………………………………….…................14

2.3 Entity Relationship Diagram…………………………………….…….................15

2.3.1 Description of Entities …………………………………………………..……..15

v

2.3.2 Description of Relation ……………………………………….…….................15

2.3.3 ERD ………………………...…………………………………….……………16

2.4 Class Diagram ……………………………………………..…………………….17

2.5 Object Diagram ………………………….……………………………..………..18

2.6 Use Case diagram ………………………………….…………………………….19

2.7 Activity diagram …………………………………………………………...……20

2.8 Sequence Diagram ……………………………………………………….………22

2.9 State diagram …………………………………………………………………….23

3 System design:

 3.1Description of procedures and function :………………………………………...24

3.2 Relation database schema :……………………………………………………….25

3.3 Hardware and Software requirement:…………………………………………….26

3.4 Initial Interfaces: ……...…………………………………………….....................28

4 Implementation and Testing

 4.1 Introduction:……………………………………………………………………..33

4.2 Procedure:………………………………………………………………………..33

4.3 Layout:…………………………………………………………………………...37

4.4 Report Layout:…………………………………………………………………...39

4.5 Report:……………………………………………………………………………55

4 conclusion:…………………………………………………………………………59

Reference …………………………………………………………………………….60

Appendixes A ………………………………………………………………..………61

Appendixes B ………………………………………………………………………..66

vi

List of figure:

Figure (1.2.4.1) General element in system …………………………………………..4

Figure (1.2.4.2) Function of element ………………………………………………….4

Figure (2.2.1) Context diagram ……………………………………………………...12

Figure (2.2.2) DFD level0 …………………………………………………………...13

Figure (2.2.3) Detailed of DFD ……………………………………………………...14

Figure (2.3.3) ER diagram …………………………………………………………...16

Figure (2.4) Class diagram …………………………………………………………..17

Figure (2.5) Object diagram …………………………………………………………18

Figure (2.6) Use Case diagram ………………………………………………………19

Figure (2.7.1) Supervisor Activity diagram …………………………………………20

Figure (2.7.2) Pilgrim Activity diagram ……………………………………………..21

Figure (2.8) Sequence diagram ……………………………………………………...22

Figure (2.9) State diagram …………………………………………………………...23

Figure(3.4.1) Registration interface ………………………………………………...28

Figure (3.4.2) Login interface ……………………………………………………….29

Figure (3.4.3) Admin interface ………………………………………………………30

Figure (3.4.4) Supervisor interface ……………………………………….………….31

Figure (3.4.5) Pilgrim interface ……………………………………………………...32

Figure (4.3.1) sign up interface………………………………………………………37

Figure (4.3.2) sign in interface ………………………………………………………37

Figure(4.3.3) supervisor interface……………………………………………………37

Figure(4.3.4) Admin interface………………………………………………………..37

Figure(4.3.5)Pilgrim interface………………………………………………………..38

Figure(4.3.6)pilgrim's location……………………………………………………….38

Figure(4.3.7)Supervisor location…………………………………………………….38

Figure(4.4.1) sign in interface……………………………………………………….39

Figure(4.4.2) sign in Arabic language……………………………………………….40

Figure(4.4.3) sign up interface ……………………………………………………...41

vii

Figure(4.4.4) Admin interface ………………………………………………………42

Figure(4.4.5) Admin Add Supervisor………………………………………………43

Figure(4.4.6) Supervisor interface…………………………………………………..44

 Figure(4.4.7) Supervisor Add pilgrims……………………………………………..45

Figure(4.4.8) Supervisor Add Event…………………………………………………46

Figure(4.4.9) Supervisor Delete pilgrims………………………………………...…..47

Figure(4.4.10) Supervisor Modify pilgrim…………………………………………...48

Figure(4.4.11) Supervisor Show pilgrims location ………………………………….49

Figure(4.4.12) Pilgrim interface……………………………………………………...50

Figure(4.4.13) Pilgrim Show events…………………………………………………51

Figure(4.4.14) Macca places……...………………………………………………….52

Figure(4.4.15) Supervisor location…………………………………………………...53

Figure(4.4.16) Pilgrim Call supervisor………………………………………………54

Figure (4.5.1) Pilgrim Tracing System………………………………………………55

Figure (4.5.2) Admin-Supervisor database…………………………………………..55

Figure (4.5.3) Supervisor-Pilgrim database…………………………….……………56

Figure (4.5.4) User database…………………………………………………………56

Figure (4.5.5) Event database……………………………………….………………..57

Figure (4.5.6) Location database……………………………………………….…….57

viii

 List of Table:

Table (1.4.4) Comparison table …………………………………………………..…...8

Table (3.2.1) Users database ……………..………………………………..………...25

Table (3.2.2) Event database …………………………………..…………………….25

Table (3.2.3) Location database ……………………………………..………………25

Table (3.3.1) Hardware requirement ……………………………..………………….26

Table(4.5.1) User database …………………………………………………………..58

Table(4.5.2) Event database…...……………………………………………………..58

Table(4.5.3) Location database ………………….…………………………………..58

1

chapter1: INTRODUCTION

1.1 Overview

Many millions of Muslims come to Mecca in Saudi Arabia to perform pilgrim (Hajj)

every year from all around the world. They used to dress white clothes that represent

the real of human equality. Young and old ages, poor and rich people, and famous and

simple people all together come to this holy place seeking the forgiveness from

ALLAH. The Hajj is one of the five pillars in Islam. It is a must for each Muslim if he/

her can afford the physical and financial ability.

Muslims follow the Islamic lunar calendar. However, the month of Hajj represents the

12th month of the Islamic lunar year and is called 'Dhul-Hijjah'. Early in Hajj month,

Muslims start coming and gathering in Mecca preparing for this great event. Hajj main

rites take place from 8th to 12th days of 'Dhul-Hijjah'.

The Prophet Muhammad, peace be upon him, said that the first ten days of 'Dhul-Hijjah'

represent a special time for devotion. In these days, preparations are on the run for

pilgrims undertaking the pilgrimage were the real pilgrimage rites happen. The day of

'ARAFAT' which is the day number 9 in the month shows the great of Hajj by gathering

all millions of pilgrims on ARAFAT mounting seeking the forgiveness from God

(ALLAH). The mount of ARAFAT represents the place where our prophet, peace be

upon him, gave his farewell sermon. This day is followed by day number 10 which

represents ' Eid al-Adha' day where all Muslims around the world celebrate this festival.

All places in Mecca were equipped with all needed facility to control and monitor Hajj

process. In addition, the parties in charge are ready to introduce the assistance to

pilgrims and to guide them step by step to accomplish this holy journey. (Al-Akhras.A.2017)

The current provided services and all these developed facilities in Mecca that facilitates

the performing of pilgrim are very appreciated. Still, as the number of pilgrims is huge,

different languages, variety of ages, cultures and needs, each pilgrim might need an

assistance to keep him safe and to guide him/ her in performing Hajj rites. Thereby,

there is a need to develop a communication system that facilitates the communication

between the pilgrim and the campaign manager to handle pilgrim's lost and to introduce

the needed help very fast.

https://www.thoughtco.com/biography-of-the-prophet-muhammads-later-life-2004472

2

1.1.1 Abstract system description:

Pilgrim's application eases the communication with campaign manager, the

application provides a variety of services. If the pilgrim wants to go to the place of the

next Mansak, the pilgrim simply opens the application and looks to the map that

provides him/ her with the details about any location inside Mecca. If the pilgrim has

lost the road, both pilgrim and campaign supervisor can open the map inside the

application and locate the location of each other which can be utilized for bringing

back the lost pilgrims. The application provides a direct call feature to campaign

Supervisor in case the pilgrim could not be able to use the map. and supervisor Add

events about this day and sent to pilgrims.

1.2 Problem Statement:

The pilgrims come from different places with many languages to Mecca to perform

Hajj. As most of them do not know the exact rites locations, the time the rite starts and

ends, the movement between rites places and the inability to contact their campaign

manager in case of lost or sick, many problems may occur. The most difficult case is

the loss of pilgrim between this huge number of pilgrims and the inability to

communicate with his/ her campaign manager. This study seeks the implementation of

mobile applications that overcome the mentioned problems and facilitates the process

of Hajj.

3

1.2.1 Goals:
This project is building to

- To facilitate the communication between the pilgrim and the campaign

manager

- To ease the determination of pilgrim location and the location of his/ her

campaign manager

- To know the place of the next rite and to provide details about that rite

- To provide a mobile application that address all issues related to pilgrims

1.2.2 Objectives:
- Minimize the loss of pilgrim

- Finding the lost pilgrim quickly

- Assist campaign in finding the lost pilgrim

- Direct the pilgrims to the rites in an optimal way

 1.2.3 Critical success factors:
- Each pilgrim has a unique identifier to ease the process of tracking on the map

- Each pilgrim and campaign manager must have internet connection

4

1-2-4 Organization chart and responsibilities:

Figure1.2.4.1: general element in system

Figure1.2.4.2: function of elements

1.3 General rules (assumptions):
- Each campaign should have a secret-unique ID that passed to pilgrims by their

campaign manager.

- Each pilgrim and campaign manager must have internet connection

- Android Operating System

Pilgrim tracing system

GPS pilgrim Supervisor Admin

Pilgrim tracing system

pilgrim Supervisor GPS

-Search for

specific place

-Location tracking

supervisor

-Communicating

with supervisor

-Show place Pilgrim

and supervisor

-Show map of

Makkah pilgrimage

places

-Add, delete or

modify Pilgrim .

- add, or modify

event.

-Follow the pilgrim

place

-Assistance to the

Pilgrim

Admin

-add , delete

or modify

supervisor.

5

1.4: literature survey:

1-Manasikana

2-Familo locator

3-space time

1.4.1 Manasikana:

 https://itunes.apple.com/us/app/manasikana/id1119024075?mt=8 Relied As:

- -simple Description:

An application that offers Hajj services in seven languages, application on maps of the

places Hajj, the direction of the Kaaba, and your current location, and provides the

important numbers and emergency numbers that Haj may need.

-Advantages:

-Easy to use

-Multilanguage

-Maps provide all important places in Hajj.

- problems:

-there is no connection between the pilgrim and her group.

https://itunes.apple.com/us/app/manasikana/id1119024075?mt=8

6

1.4.2 familo locator:

 https://www.familo.net/ar/index.htmlRelied As :

-Simple Description:

Application to track and locate your kids and family by locating them using a GPS

tracker, and communicating with them directly through the application.

-Advantages:

It can be used in the event of an emergency and this through the provision of -

button in the application works to determine the whereabouts and emergency

.information to the second party send

- provides more safety for parents.

-problems:

-The person can decide to send your place or not.

https://www.familo.net/ar/index.html

7

1.4.3 Space Time:

 time/id508723489?mt=8-https://itunes.apple.com/us/app/spaceRelied As:

-Simple Description:

Application to watch friends and family by sending a message to the person (where is

Click here to enter your place) If you press the button (here) the map your place

.your place is opened and can follow you any time of

:Advantages-

it not necessary to download the Application for the second person to-

.become a service provider

: problems-

.Application is not available for Android-

.The Application version is old and there is no new version-

https://itunes.apple.com/us/app/space-time/id508723489?mt=8

8

1.4.4 table of comparison

The proposed

project

Space Time Familo locator Manasikana App

English English English 7 languages Languages

Yes Yes Yes Yes Possibility of

Registration

Yes Yes Yes No Possibility to

trace the map

Yes No Yes Yes Possibility to

direct

communication

Fast slow fast Slow Speed

Table (1.4.4): comparison table

9

1.5 feasibility study:

1.5.1: Data collection:

In this project data collected using questionnaire method. A random sample was

chosen from people who had completed Hajj and those who intend to perform Hajj in

the future was selected to identify their views on the project idea.

the total number of the sample was (45). questionnaire was distributed through

Google Drive in general the result of the questionnaire was that there are people who

are afraid of loss in Hajj, and loss affects their performance of Hajj and they have no

knowledge of the MANASIK in the Hajj (see appendix).

1.5.2 Financial Feasibility:

Being a mobile application, Pilgrim tracking App will not contain hosting cost. The app

will follow Android software standards. No cost will be charged from the potential

customers. Bug fixes and maintaining tasks will have an associated cost. At the initial

stage the potential market space will be ministry of Hajj, Hajj service-provider

companies and pilgrims. Beside the associated cost, there will be many benefits for the

government, pilgrims and their supervisors. Especially the less effort that is associated

with pilgrim’s lost and pilgrim guidance will be significantly improved while the effort

to provide a full guiding app, since pilgrim locations will be monitored in real time

environment. From these it’s clear that the project of Pilgrim (Hajj)tracking App is

financially feasible.

1.5.3 Technical Feasibility:

The project of Pilgrim Guiding App is a complete mobile application. The main

technologies and tools that are associated with the App are:

- Android software standards which includes:

1. Android software development kit (SDK)

2. Programming languages such as Java, C++

3. Third party tools such as AIDE, Android: Build, Corona SDK, Delphi

- Diagram drawing tools (Creatly software)

Each of the technologies are freely available and the technical skills required are

manageable. Time limitations of the product development and the ease of

implementing using these technologies are managed. Initially the web site will be

hosted in a free web hosting space, but for later implementations it will be hosted

10

in a paid web hosting space with a sufficient bandwidth. In addition, the hardware

requirements for running the application are:

- Android devices with Android 5+

- Minimal of 2 GB Ram

- Intel core i3 clocked at nearly 2 GHZ +

From these it’s clear that the Pilgrim tracking App is technically feasible.

1.5.4 Resource feasibility:

The required resources for the Pilgrim Guiding App include:

- Programming device (windows emulators)

- Programming tools (freely available)

- Programming individuals

That’s it, it’s clear that the Pilgrim tracking App has the required resource

feasibility.

1.5.5 Does the environment make use of a database or repository?

- This is a database-oriented app that will use MYSQL. Are all the software tools

integrated with one another? Main deliverables will be packaged under a single

project. All the stake holders will have a single login page.

- Process issue risks: Pilgrim Guiding App will follow the Agile software

development process. This provides the flexibility to accommodate changing

software requirements of Pilgrim Guiding App.

- Technical issue risks Are specific conventions for code documentation defined

and used? Software code will be available upon request in coordination with our

college and the code documentation will be provided.

- Technology risks: Is the technology to be built new? All the technologies are

very well established and old enough (but not obsolete).

1.5.6 Social/Legal Feasibility:

- Pilgrim Guiding App uses freely available development tools.

- Since this new app eliminates the effort to track, guide and support pilgrim as

needed, it will have a great impact in Hajj season.

 1.5.7 Maintainability:

- Pilgrim Guiding App is designed using the best practices of Agile and OOP.

Since every single segment in the App is very well structured, the

- App is highly maintainable.

11

Chapter 2: System Analysis

2.1 introduction:

“The systems analyst plays a key role in information systems development projects.

The systems analyst works closely with all project team members so that the team

develops the right system in an effective way. Systems analysts must understand how

to apply technology to solve business problems. In addition, systems analysts may serve

as change agents who identify the organizational improvements needed, design systems

to implement those changes, and train and motivate others to use the systems”.

(BARBARA,H.2008.pp8)

2.2 description of Data Flow Diagram(DFD):

Also known as BUBBLE CHART, a data flow diagram(DFD) is a graphical

representation of the flow of data through an information system , modeling its

.process aspects

l be input to and output from the system. DFD shows what kind of information wil

.From where the data will come and were the data will stored

DFD does not show information about the timing of processes or information about

on the whether processes will operate in sequence or in parallel which is shown

(Bharath.P.2012) Flowchart.

12

2.2.1 Context diagram:

Context diagram is used to establish the context and boundaries of the system to be

modeled: which things are inside and outside of the system being modeled, and what is

the relationship of the system with these external entities. A context diagram,

sometimes called a level 0 data-flow diagram, is drawn in order to define and clarify

the boundaries of the software system. It identifies the flows of information between

the system and external entities. (Bharath.P.2012)

The diagram figure 2.2.1 three main components which are system, actors and inputs.

the system has three main actors Admin, Supervisor, and Pilgrim respectively. Each

one of them will interact with the system to perform some tasks. Their interaction with

the system occur using inputs.

figure(2.2.1): context diagram

13

2.2.2 overview diagram(level0):

In figure(2.2.2) three actors Admin, Supervisor and pilgrim .

Show the process of each actors and data store for each information.

Figure(2.2.2): DFD level0

14

2.2.3 Detailed DFDs:

Figure(2.2.3): detailed DFD

15

2.3 Entity Relationship Diagram(ERD):

An entity-relationship diagram (ERD) is a graphical representation of an information

system that shows the relationship between people, objects, places or concepts within

that system. An ERD is a data modeling technique that can help define business

processes and can be used as the foundation for a relational database.

2.3.1 Description of Entities:

-Admin entity which represent app administer and have the following attributes (User

Name, Password, Mobile).

-pilgrim entity which represent app users and have the following attributes (User

Name, password, Mobile) .

-supervisor entity which represent app trip mentor and have following attributes (User

Name, password, Mobile).

2.3.2 Description of relations:

- Every supervisor can add or delete or modified each pilgrim.

- Every supervisor in the application can communication with one or more pilgrims

and pilgrim communicate with one supervisor

- Every supervisor can show location one or more pilgrims and pilgrim can show

location one supervisor.

- Every supervisor can add or modified one or more event.

-Every pilgrims can search one or more of a right place.

16

2.3.3: ER Diagrams:

figure(2.3.3): ER diagram

17

2.4 Class Diagram:

A class describes a group of objects with similar properties (attributes), common

behavior (operations), common relationships to other objects, and common meaning

(“semantics”). (Bharath.P.2012)

- AddPilgrim() Add pilgrims by supervisor

- SearchPilgrim() Search for pilgrim location

- ContactPilgrim() Call the pilgrim and check his/ her status

- AddEvent() Supervisor can add, update, delete or call for an event to be attended by

pilgrims

- SearchRightPlace() Search and request right location to visit

- AddSupervisor() Admin can add one or more supervisors

- EventDetails() Pilgrims and supervisors can view and explore event details

Figure(2.4): class diagram

18

2.5 Object Diagram:

Model the instances of things described by a class. Each object diagram shows a set

of objects and their interrelationships at a point in time. Used to model a snapshot of

the application. Each object has an optional name and set of classes it is an instance

of, also values for attributes of these classes. (Bharath.P.2012)

Figure 2.5 shows the object diagram of the system that demonstrates the relation

between the instantiated classes and the defined class, and the relation between these

objects in the system. Objects (Admin, Supervisor, and Pilgrim) are an instance of a

moments in runtime, including objects and data values. It may be considered a special

case of a class diagram or a communication diagram.

Figure(2.5): object diagram

19

2.6 Use Case Diagram:

A use case diagram can be defined as a graphical description of the interactions between

system elements .A use case is a methodology used in system analysis to identify,

explain, and organize system requirements. In this context, the term "system" refers to

something being developed or operated, such as a mail-order product sales and service

Web site. Use case diagrams are employed in UML, a standard notation for the

modeling of real-world objects and systems.(Bharah.P.2012)

Actor in my system are Admin, Supervisor and Pilgrim.

 Use cases in my system are login (admin, supervisor, pilgrim),

admin is (add/delete supervisor,) admin and supervisor are (add pilgrim),

supervisor is (View pilgrim location), pilgrim is (view supervisor location),

communication with pilgrim/ supervisor, supervisor is (add event, delete event) and

log out(admin, supervisor, pilgrim).

Figure(2.6): use case diagram

20

2.7 Activity Diagram:

in UML can be defined as a graphical representation of an executed set of procedural

system activities and considered a state chart diagram variation. Activity diagrams

describe parallel and conditional activities, use cases and system functions at a detailed

level. (Bharah.P.2012)

Figure(2.7.1): supervisor object diagram

21

Figure 2.7.2pilgrim object diagram

22

:Sequence Diagram 2.8

Diagrams are interaction diagrams that detail how operations are carried Sequence “

out. They capture the interaction between objects in the context of a collaboration.

Sequence Diagrams are time focus and they show the order of the interaction

vertical axis of the diagram to represent time what messages visually by using the

). para1paradigm. n.d-(visual"are sent and when

Figure 2.8 The supervisor initiates the system trying to add new pilgrims, update right

places list, add, update or delete an event. The information of any function made by the

supervisor will be added and updated in the database. Then, the system will react to any

query or data entry responding to supervisor’s request. In this sequence diagram, the

supervisor for example request a location. Then the system checks location directions,

select the right place and send it back to supervisor and to pilgrim as well.

Figure 2.8 sequence diagram

23

2.9 state diagram:

Figure 2.9 explains the state diagram that contains the following components:

- Initial state: it shows the starting point or first activity of the flow.

- Final state: it represents the end of state diagram where no action is to be taken

(all ended functions will go to final state).

- State: it represents the instances in the system (add pilgrim, search right place,

search for pilgrim, add event)

- Transition: an arrow indicating the object to transition from one state to the

other.

Figure 2.9 state diagram

24

Chapter 3 system design:

 3.1: Description of procedures and function:

This section explains the procedures and functions of the online Pilgrim Guiding

System. The functionality of the system is divided into system administration functions

and system user functions. The details description of the mentioned functionalities is

listed below:

3.1.1 System Functionality

The functions of the system are divided into two main categories, functions provided

to the system administrator and functions provided to the users.

System Administration Functions

- Add A New User (Pilgrim or Supervisor)

It allows the system administrator to add a new user by identifying the basic

information (ID, name, phone number, registration date… etc.) and identify the

type of user (pilgrim or Supervisor).

- Modify User Information

This feature allows the admin to modify user information by entering user ID and

then displays the information that can be modified.

- Delete User: Allow to delete specific user by entering user ID.

- Show All Users: It allows the system administrator to view all the user

information by selecting the type of user and year of registration.

- Add Event: This feature allows the administrator to create an event, modify the

event or delete that event.

3.1.2 User Functions

The online pilgrim guiding system provides the following functions to the

supervisor.

- Safe range Distance

It allows the supervisor to identify the safe range distance with the pilgrims.

- Notify the supervisor

Notify the supervisor of all pilgrims (belong to him) about any pilgrim who

exceeds the safe distance and show their location on map.

- Pilgrim Tracking

Track all pilgrims and show their location on map.

- Event Call

This feature allows the supervisor to call pilgrims to attend an event and to guide

them to event location.

- Send help request

The system allows pilgrims to send help requests to their supervisors when they need

any assistance.

25

3.2:Relation database schema:

Table (3.2.1): User database

Properties Date type Field Name

Foreign

Key

String uId

Primary

key

String Email

 Character Admin name

 Integer Phone number

 String Password

 Integer privilge

 String superv

Table (3.2.2): Event database

 properties Data type Field Name

 String body

 Integer evDate

 Integer evTime

 String evLoc

 Character sub

 Character pilgname

 String superme

 String userId

Table (3.2.3): Location database

Properties Data type Field Name

 float lat

 float Lng

 string mysuper

 character username

26

3.3: Hardware and Software requirements:

3.3.1 Hardware requirement:

The following table the minimum and recommended hardware requirements for

deploying pilgrim tracing. (MT.HOOD community college. 208)

Table 3.3.1 Hardware requirement

Component Minimum Recommended

Processor 2.5 gigahertz (GHz) Dual processors that are each

3 GHz or faster

RAM 1 gigabyte (GB) 2 GB or more

Disk NTFS file system–

formatted partition with

a minimum of 3 GB of

free space

NTFS file system–formatted

partition with 3 GB of free

space plus adequate free space

for your Web sites

Drive DVD drive DVD drive or the source

copied to a local or network-

accessible drive

Display 1024 × 768 1024 × 768 or higher

resolution monitor

Network 56 kilobits per second

(Kbps) connection

between client

computers and server

56 Kbps or faster connection

between client computers and

server

27

3.3.2: software requirement:

The project of Pilgrim tracking System is android application. The main technologies

and tools that are associated with the system are:

- Android studio

- Java.

- Xml.

- Firebase Database.

- Diagram drawing tools (Creatly software)

Each of the technologies are freely available and the technical skills required are

manageable. Time limitations of the product development and the ease of

implementing using these technologies are managed. Initially the web site will be

hosted in a free web hosting space, but for later implementations it will be hosted

in a paid web hosting space with a sufficient bandwidth.[9]

28

3.4:Initial Interfaces:

Figure(3.4.1): registration interface

29

Figure(3.4.2): login interfaces

30

Figure(2.4.3): Admin interface

31

Figure(3.4.4): supervisor interface

32

Figure (3.4.5): pilgrim interface

33

Chapter 4: implementation and Testing:

4.1: Introduction:

A programming language implementation is a system for executing the program.

We use Android studio as editor and Firebase as Database.

4.2: procedures:

Add Supervisor Function:

private void writeNewSupPilg(String userId, String Pilgrimname, String

Phonenumber, String pakagename,String Pilgrim_num) {

// Create new post at /user-posts/$userid/$postid and at

 // /posts/$postid simultaneously

 String key = mDatabase.child("Pilgrim").push().getKey();

 Pilgrim post = new Pilgrim(userId, Pilgrimname, Phonenumber,

pakagename,Pilgrim_num);

 Map<String, Object> postValues = post.toMap();

 Map<String, Object> childUpdates = new HashMap<>();

 childUpdates.put("/Pilgrim/" + key, postValues);

 childUpdates.put("/Admin-Supervisor/" + userId + "/" + key, postValues);

 mDatabase.updateChildren(childUpdates);

}// add supervisor in database

Add Pilgrim Function:

private void writeNewPilg(String userId, String Pilgrimname, String

Phonenumber, String pakagename,String Pilgrim_num) {

 // Create new post at /user-posts/$userid/$postid and at

 // /posts/$postid simultaneously

 String key = mDatabase.child("Pilgrim").push().getKey();

 Pilgrim post = new Pilgrim(userId, Pilgrimname, Phonenumber, pakagename,

Pilgrim_num);

 Map<String, Object> postValues = post.toMap();

 Map<String, Object> childUpdates = new HashMap<>();

 childUpdates.put("/Pilgrim/" + key, postValues);

 childUpdates.put("/Supervisor-Pilgrim/" + userId + "/" + key,

postValues);

 mDatabase.updateChildren(childUpdates);

}// add pilgrim in database

Modify Function:

private void updatePilg(DatabaseReference postRef) {

 postRef.runTransaction(new Transaction.Handler() {

 @Override

 public Transaction.Result doTransaction(MutableData mutableData) {

 Pilgrim p = mutableData.getValue(Pilgrim.class);

34

 if (p == null) {

 return Transaction.success(mutableData);

 }

 p.Pilgrim_name=mName.getText().toString();// update the name

 p.Phone_number=mPhone.getText().toString();//update the phonenum

 mutableData.setValue(p);

 return Transaction.success(mutableData);

 }

Delete Function:

private void deletePilg(final DatabaseReference postRef) {

 postRef.runTransaction(new Transaction.Handler() {

 @Override

 public Transaction.Result doTransaction(MutableData mutableData) {

 Pilgrim p = mutableData.getValue(Pilgrim.class);

 if (p == null) {

 return Transaction.success(mutableData);

 }

 if (p.stars.containsKey(getUid())) {

 // Unstar the post and remove self from stars

 p.starCount = p.starCount - 1;

 p.stars.remove(getUid());

 String priv= User.getpublicpriv();

 String uid= p.Pilgrim_num;

 if(priv.equals("0")) {

 mDatabase.child("Pilgrim").child(postRef.getKey()).removeValue();

 mDatabase.child("Admin-

Supervisor").child(User.getpublicid()).child(postRef.getKey()).removeValue(); // delete

 mDatabase.child("users").child(uid).removeValue();

 }

 else if(priv.equals("1")) {

 mDatabase.child("Pilgrim").child(postRef.getKey()).removeValue();// delete pilgrim from data table

 mDatabase.child("Supervisor-

Pilgrim").child(User.getpublicid()).child(postRef.getKey()).removeValue();

 }

 } else {

 p.starCount = p.starCount + 1;

 p.stars.put(getUid(), true);

 }

 mutableData.setValue(p);

35

 return Transaction.success(mutableData);

 }

 @Override

 public void onComplete(DatabaseError databaseError, boolean b,

 DataSnapshot dataSnapshot) {

 // Transaction completed

 Log.d(TAG, "postTransaction:onComplete:" + databaseError);

 }

 });

}

Tracing Function:

 private void getFromDbLng() throws InterruptedException {

// This method fetches the data

 DatabaseReference mDatabase =

FirebaseDatabase.getInstance().getReference();

 final String userId =

FirebaseAuth.getInstance().getCurrentUser().getUid();

 mDatabase.child("Pilgrim-

location").orderByChild("mysuper").equalTo(userId).addListenerForSingleValue

Event(new ValueEventListener() {

 @Override

 public void onDataChange(DataSnapshot dataSnapshot) {

 Log.e("Count " ,"" + dataSnapshot.getChildrenCount());

 f=new String[(int) dataSnapshot.getChildrenCount()][3];

 int i=0,j=0;

 for (DataSnapshot postSnapshot:

dataSnapshot.getChildren()) // reorder the data in class format

 {

 Locat c = postSnapshot.getValue(Locat.class);

//stroe the data and the name of coordinates on the map

 f[i][0]=c.lat;

 f[i][1]=c.lng;

 f[i][2]=c.username;

 Log.v(TAG," add to list "+ f[i][0]+" "+f[i][1]+"

"+f[i][2]);

 i++;

 }

 }

 @Override

 public void onCancelled(DatabaseError databaseError) {

 }

 });

 }

 private String getlng(String lng){

 longitude =lng;

 return lng;

36

 }

 private String getlat(String lat){

 latitude =lat;

 return lat;

 }// view the coordinates of the pilgrims who follow a particular

supervisor in matrix

public void onMapReady(GoogleMap googleMap) {

 mMap = googleMap;

 mMap.setMapType(GoogleMap.MAP_TYPE_TERRAIN);

 try {

 TimeUnit.SECONDS.sleep(5); // download data stop

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 for(int i=0;i<f.length;i++) { //matrix element of loop of the pilgrim

 lon = Double.parseDouble(f[i][1]); // extraction of coordinates of

piligrims

 lat = Double.parseDouble(f[i][0]);

 LatLng location = new LatLng((lat), (lon));

 Log.i("Location", location.toString() +""+f[i][2]);

 mMap.addMarker(new MarkerOptions().position(location).title(

f[i][2]+" Pilgram Location")); // Assign the name of the pilgrim

stored in the matrix to the mark

 mMap.animateCamera(CameraUpdateFactory.newLatLngZoom(location, 15.0f)

);

 }

}

37

4.3 Layouts:

Figure 4.3.1 sign up interface Figure 4.3.2 sign in interface

Figure 4.3.3 supervisor interface Figure 4.3.4 Admin interface

38

Figure 4.3.5 pilgrim interface Figure 4.3.6 pilgrim's location

Figure 4.3.7 supervisor location

39

4.4 Report Layouts:

Figure 4.4.1 sign in interface

Login site for all users If you are not registered, click (Register) and there is an option

to switch Arabic or English languages. Here we chose the English language.

40

Figure 4.4.2 Sign in Arabic Language.

41

Figure 4.4.3 sign up interface

Sign Up interface for Admin of Campaign. Then Admin Can Add Supervisors.

42

Figure 4.4.4 Admin interface

Admin of Campaign interface. Can (Add, Modify, Delete) Supervisors and show the

Event.

43

Figure 4.4.5 Admin Add Supervisors.

44

Figure 4.4.6 Supervisor interface.

Supervisor can (Add, Delete, modify) pilgrim, Add new event, Call pilgrim and Show

pilgrim location

45

Figure 4.4.7 Supervisor Add Pilgrims.

46

Figure 4.4.8 Supervisor Add events.

47

Figure 4.4.9 Supervisor Delete Pilgrims.

48

Figure 4.4.10 Supervisor Modify Pilgrims.

49

Figure 4.4.11 Supervisor Show Pilgrim Location.

50

Figure 4.4.12 Pilgrims Interface.

Pilgrim can show the Event, Mecca places, supervisor location and Call the

Supervisor.

51

Figure 4.4.13 Pilgrim Show events.

52

Figure 4.4.14 Macca Location.

53

Figure 4.4.15 Supervisor Location.

54

Figure 4.4.16 Pilgrim Call Supervisor.

55

4.5:Reports:

Figure 4.5.1 Pilgrim Tracing System Database

Figure 4.5.2 Admin-Supervisor database.

56

Figure 4.5.3 Supervisor-Pilgrim database

Figure 4.5.4 User (Admin, Supervisor, Pilgrim) database

57

Figure 4.5.5 Event Database

Figure 4.5.6 Location Database

58

Table 4.5.1User database

Table 4.5.2 Event Database

Table 4.5.3 Location Database

59

Chapter 5 Conclusions:

1- After reviewing the current study and studying it thoroughly, the system was

analyzed according to it and work on establishing an application that manages

supervisor and pilgrim communication.

 2- Through the use of the application, the supervisor is able to rely on it to manage

and control pilgrim data, as well as to manage its location and states.

3- Through the use of the application, the supervisor can manage the lost Pilgrim

roadmap and guide him/her to the right way.

. 4- By using the application, the system administrator can add or remove supervisor

5- Pilgrim can knows his Manask roadmap easily.

Future works:

Project Development.

Add message chatting between Pilgrims And Supervisor.

60

References:

Retrieved from Hajj Exemplifies Equality Before God. Akhras. 2017. -Ahmad Al

 2004307-god-before-equality-exemplifies-www.thoughtco.com/hajjhttps://

Alexander. S (2017). Structural specification: beyond class diagrams.2IW80 Software

specification and architecture.

 BARBARA,H. (2008). SYSTEM ANALYSIS AND DESIGN(5 ed pp.8). Don Fowley.

 Bharath. P (2012). UNIFIED MODELING LANGUAGE (UML) OVERVIEW. Principles of

Software Engineering.

MT. HOOD Community College (2018). Hardware and Software Requirements.

-https://www.visual . Retrived from What is sequence diagramparadigm. n.d. -visual

 diagram-sequence-is-language/what-modeling-unified-paradigm.com/guide/uml

https://www.thoughtco.com/hajj-exemplifies-equality-before-god-2004307
https://www.thoughtco.com/hajj-exemplifies-equality-before-god-2004307
https://www.thoughtco.com/hajj-exemplifies-equality-before-god-2004307
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-sequence-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-sequence-diagram

61

Appendix A:

Data collection (questionnaire method):

62

63

64

65

66

Appendix B:

Some code:

Add Event:

private void writeNewEvent(String userId, String sub, String body, String

evDate,String evtime,String evloc,String id) {

 // Create new post at /user-posts/$userid/$postid and at

 // /posts/$postid simultaneously

 String username,superme;

 superme=User.getpublicsuperv();

 username=User.getpublicusername() ;

 String key = mDatabase.child("Event").push().getKey();

 Event event = new Event(userId, sub,

body,evDate,evtime,evloc,id,username,superme);

 Map<String, Object> postValues = event.toMap();

 Map<String, Object> childUpdates = new HashMap<>();

 childUpdates.put("/Event/" + key, postValues);

 childUpdates.put("/Supervisor-Event/" + userId + "/" + key, postValues);

 mDatabase.updateChildren(childUpdates);

}

Sign In :

package com.CP.Pilgrim.quickstart.PilgrimTracing;

import android.Manifest;

import android.app.AppOpsManager;

import android.content.Context;

import android.content.Intent;

import android.content.SharedPreferences;

import android.content.pm.PackageManager;

import android.os.Build;

import android.os.Bundle;

import android.preference.PreferenceManager;

import android.support.annotation.NonNull;

import android.support.v4.app.ActivityCompat;

import android.text.TextUtils;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Switch;

import android.widget.Toast;

import com.CP.Pilgrim.quickstart.PilgrimTracing.models.User;

import com.google.android.gms.tasks.OnCompleteListener;

import com.google.android.gms.tasks.Task;

import com.google.firebase.auth.AuthResult;

import com.google.firebase.auth.FirebaseAuth;

import com.google.firebase.auth.FirebaseUser;

import com.google.firebase.database.DataSnapshot;

import com.google.firebase.database.DatabaseError;

import com.google.firebase.database.DatabaseReference;

import com.google.firebase.database.FirebaseDatabase;

import com.google.firebase.database.ValueEventListener;

public class SignInActivity extends BaseActivity implements

67

View.OnClickListener {

 private String LANG_CURRENT = "en";

 private static final String TAG = "SignInActivity";

 public static final int PERMISSION_ALL = 200;

 private DatabaseReference mDatabase;

 private FirebaseAuth mAuth;

 private EditText mEmailField;

 private EditText mPasswordField;

 private Button mSignInButton;

 private Button mSignUpButton;

 private Switch h;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

setContentView(com.CP.Pilgrim.quickstart.PilgrimTracing.R.layout.activity_si

gn_in);

 mDatabase = FirebaseDatabase.getInstance().getReference();

 mAuth = FirebaseAuth.getInstance();

 // Views

 mEmailField =

findViewById(com.CP.Pilgrim.quickstart.PilgrimTracing.R.id.field_email);

 mPasswordField =

findViewById(com.CP.Pilgrim.quickstart.PilgrimTracing.R.id.field_password);

 mSignInButton =

findViewById(com.CP.Pilgrim.quickstart.PilgrimTracing.R.id.signinbtn);

 mSignUpButton = findViewById(R.id.signupbtn2);

 h=findViewById(R.id.swlang);

 String[] PERMISSIONS = {

 Manifest.permission.ACCESS_FINE_LOCATION,

Manifest.permission.RECEIVE_BOOT_COMPLETED, Manifest.permission.CALL_PHONE,

Manifest.permission.INTERNET, Manifest.permission.ACCESS_NETWORK_STATE,

Manifest.permission.RECEIVE_BOOT_COMPLETED,

Manifest.permission.PACKAGE_USAGE_STATS,Manifest.permission.READ_PHONE_STATE

};

 if (!hasPermissions(this, PERMISSIONS)) {

 ActivityCompat.requestPermissions(this, PERMISSIONS,

PERMISSION_ALL);

 }

 if (Build.VERSION.SDK_INT > 20) {

 AppOpsManager appOps = (AppOpsManager)

 getSystemService(Context.APP_OPS_SERVICE);

 int mode = 0;

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {

 mode = appOps.checkOpNoThrow("android:get_usage_stats",

 android.os.Process.myUid(), getPackageName());

 }

 boolean granted = mode == AppOpsManager.MODE_ALLOWED;

 }

 findViewById(R.id.swlang).setOnClickListener(new

View.OnClickListener() {

 @Override

 public void onClick(View v) {

68

 if (LANG_CURRENT.equals("en")) {

 changeLang(SignInActivity.this, "ar");

 User.setpubliclang("en");

 h.setText("EN");

 } else {

 changeLang(SignInActivity.this, "en");

 h.setTextOn("عربي");

 h.setText("عربي");

 User.setpubliclang("en");

 }//switch languages

 finish();

 startActivity(new Intent(SignInActivity.this,

SignInActivity.class));

 }

 });

 // Click listeners

 mSignInButton.setOnClickListener(new View.OnClickListener() {
@Override

 public void onClick(View view) {

 signIn();

 }

 });

 mSignUpButton.setOnClickListener(new View.OnClickListener(){
@Override

 public void onClick(View view) {

 startActivity(new

Intent(SignInActivity.this,SignUpActivity.class));

 }

 });

 }

 @Override

 public void onStart() {

 super.onStart();

 // Check auth on Activity start

 if (mAuth.getCurrentUser() != null) {

 onAuthSuccess(mAuth.getCurrentUser());

 }

 }

 public static boolean hasPermissions(Context context, String...

permissions) {

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M && context !=

null && permissions != null) {

 for (String permission : permissions) {

 if (ActivityCompat.checkSelfPermission(context, permission)

!= PackageManager.PERMISSION_GRANTED) {

 return false;

 }

 }

 }

 return true;

 }

 private void signIn() {

 Log.d(TAG, "signIn");

 if (!validateForm()) {

 return;

 }

 showProgressDialog();

69

 String email = mEmailField.getText().toString();

 String password = mPasswordField.getText().toString();

 mAuth.signInWithEmailAndPassword(email, password)

 .addOnCompleteListener(this, new

OnCompleteListener<AuthResult>() {

 @Override

 public void onComplete(@NonNull Task<AuthResult> task) {

 Log.d(TAG, "signIn:onComplete:" +

task.isSuccessful());

 hideProgressDialog();

 if (task.isSuccessful()) {

 onAuthSuccess(task.getResult().getUser());

 } else {

 Toast.makeText(SignInActivity.this, "Sign In

Failed",

 Toast.LENGTH_SHORT).show();

 }

 }

 });

 }

 private void onAuthSuccess(FirebaseUser user) {

 String username = usernameFromEmail(user.getEmail());

 // Write new user

 // writeNewUser(user.getUid(), username, user.getEmail());

 User.setpublicid(user.getUid());

 chickexist(User.getpublicid());

 // Go to MainActivity

 // startActivity(new Intent(SignInActivity.this,

MainActivity.class));

 //startActivity(new Intent(SignInActivity.this, SendService.class));

 }

 private String usernameFromEmail(String email) {

 if (email.contains("@")) {

 return email.split("@")[0];

 } else {

 return email;

 }

 }

 private boolean validateForm() {

 boolean result = true;

 if (TextUtils.isEmpty(mEmailField.getText().toString())) {

 mEmailField.setError("Required");

 result = false;

 } else {

 mEmailField.setError(null);

 }

 if (TextUtils.isEmpty(mPasswordField.getText().toString())) {

 mPasswordField.setError("Required");

 result = false;

 } else {

 mPasswordField.setError(null);

 }

 return result;

 }

70

 private void chickexist(String uid) {

 DatabaseReference postRef =
FirebaseDatabase.getInstance().getReference().child("users").child(uid);

 postRef.addListenerForSingleValueEvent(new ValueEventListener() {

 @Override

 public void onDataChange(DataSnapshot dataSnapshot) {

 User d = dataSnapshot.getValue(User.class);

try {

 if(d.privilge.equals("0")){ // if privilge 0?

 startActivity(new Intent(SignInActivity.this,

MainAdminActivity.class));

 //MainAdminActivity interface

 User.setpublicpriv(d.privilge);

 User.setpublicsuperv(d.superv);

 User.setpublicusername(d.username);

 stopService(new

Intent(SignInActivity.this,SendService.class));

 // Intent serviceIntent = new

Intent(SignInActivity.this, SendService.class); //
startService(serviceIntent);

 finish();

 //bus number exists in Database

 } else if(d.privilge.equals("1")){//privilge 1?
startActivity(new Intent(SignInActivity.this, Main2Activity.class));

// supervisor interface

 // Intent serviceIntent = new

Intent(SignInActivity.this, SendService.class);

 stopService(new

Intent(SignInActivity.this,SendService.class));

 User.setpublicpriv(d.privilge);

 User.setpublicsuperv(d.superv);

 User.setpublicusername(d.username);

 // startService(serviceIntent);

 finish();

 }

 else if(d.privilge.equals("2")){
 startActivity(new Intent(SignInActivity.this,
MainPilgrimActivity.class));// pilgrim interfac

 // Intent serviceIntent = new

Intent(SignInActivity.this, SendService.class);

 stopService(new

Intent(SignInActivity.this,SendService.class));

 // startService(serviceIntent);

 User.setpublicpriv(d.privilge);

 User.setpublicsuperv(d.superv);

 User.setpublicusername(d.username);

 finish();

 //bus number doesn't exists.

 }

}

catch(Exception e){

 }

 }

 @Override

71

 public void onCancelled(DatabaseError databaseError) {

 }});

 }

 @Override

 protected void attachBaseContext(Context newBase) {

 SharedPreferences preferences =

PreferenceManager.getDefaultSharedPreferences(newBase);

 LANG_CURRENT = preferences.getString("Language", "en");

 super.attachBaseContext(MyContextWrapper.wrap(newBase,

LANG_CURRENT));

 }

 public void changeLang(Context context, String lang) {

 SharedPreferences preferences =

PreferenceManager.getDefaultSharedPreferences(context);

 SharedPreferences.Editor editor = preferences.edit();

 editor.putString("Language", lang);

 editor.apply();

 }

 @Override

 public void onClick(View v) {

 int i = v.getId();

 if (i == com.CP.Pilgrim.quickstart.PilgrimTracing.R.id.signinbtn) {

 signIn();

 }

 }

}

