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Abstract

We proposed a new technique to solve QBF based on Radial basis function neural networks (RBFNNs) and Prey-
Predator algorithm (PPA). Prey-Predator algorithm (PPA) is a neural learning algorithm used to determine the 
parameters of the networks. We built the neural networks to represent the logic programming in Conjunctive Normal 
Form (CNF), which has at most three variables in each clause (3-CNF). Then, these neural networks are developed to 
be recurrent neural networks to deal with universal variables in QBF problems. The neural networks models can be 
applied to solve a wide range of practical applications of Satisfiability logic programming, such as NP-complete decision 
problem, and computer network design. 
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1. Introduction  

Logic programming is used to describe relations, 
and have both a declarative and an operational 
meaning [1,2]. The general objective of artificial neural 
network is stored experiential knowledge and makes 
it available for use, similar to the brain. It acquires 
knowledge through the learning process, and use the 
power of communication between artificial neurons to 
store knowledge. The advantages and the importance 
of the RBFNNs come from that they have a simple 
topological structure , faster learning algorithms, high 
approximation capability, and have been widely 
applied in many science and engineering fields  [3-5].

Prey-Predator algorithm (PPA) is a new 
metaheuristic algorithm, introduced by Tilahun and 
Ong (2012) [6]. PPA is developed for optimization 
problems such as particle swarm optimization algorithm 
[5,7,8]. The algorithm is a more general algorithm 
where some of well-known algorithms, including 
simulated annealing, particle swarm optimization, 
firefly algorithm and evolutionary strategy, become a 
special case [7,9] . It is inspired by how the predators 
run after their prey and how the preys try to survive in 
the ecosystem. 

A proportional logic programming is a set of 
axioms, clauses, or rules which in turn consist of 
Boolean variables (literals), i.e. atoms and negated 
atoms only (negation is denoted by ¬ ) [2,10,11]. 
Quantified Boolean formula or QBF) is an extension 

of propositional logic programming in Conjunctive 
Normal Form (CNF) [1,11,12]. QBF is a proportional 
logic programming with existential quantification and 
universal quantification. The algorithms which are 
used to check the stability of the logic programming 
are called Satisfiability or SAT solvers [13]. In practice, 
SAT is fundamental in solving many problems, such 
as, circuit design, and computer network design. The 
simplest SAT solver is called the truth-table method. 
It constructs the full table, which will have 2n  rows 
when P has n variables, and report whether the final 
column, representing P has value 1 in any row.  Davis 
Putnam Logemann Loveland (DPLL) algorithm 
[14] works on the principle of assigning variables, 
simplifying the formula to account for that assignment 
and then recursively solving the simplified formula. 
Zhang and Malik have developed a new method  for 
evaluating QBF [1]. This method is based on the DPLL 
algorithm. Their experiments show that conflict driven 
learning strategies, when adapted in a QBF solver, can 
speed up the search process vastly. But still the most 
used strategy for SAT solvers. 

In this paper, we presented a novel preprocessing 
technique for QBF based on RBFNNs Prey-Predator 
algorithm (PPA-RBFNNs), with commercial software 
MATLAB®. It is the extension of that conference paper 
with additional of discussion [15]. PPA is selected on 
the basis that it is a new generalized algorithm and 
gives promising results when tested on benchmark 
problems as well as modeled transportation and 
engineering problems [6]. The outline of the paper 
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is as follows. In section 2 a brief introduction on 
radial basis function neural network will be discussed 
followed by pray predator algorithm in section 3. In 
section 4, Logic programming, QBF solvers and first 
order logic programming are discussed.  In section 5, 
3-QBF solvers based on RBFNNs and PPA is proposed 
with details.  At the end there will be a conclusion in 
section 6.  

1. Radial basis function neural networks

   A RBFNN in its form consists of three layers, namely, 
input layer, hidden layer, and the output layer. Each 
hidden neuron implements a nonlinear activation 
function and each output neuron implements a 
weighted sum of hidden neuron outputs. The activation 
functions in the hidden layer, such as Gaussian 
function, are also called radial basis function.  RBFNN 
has typically three layers [16,17]: namely, an input 
layer, a hidden layer [18] and a linear output layer, as 
shown in Fig. 1. The hidden layer neurons receive the 
input information, followed by certain decomposition, 
extraction, and transformation steps to generate the 
output information. RBFNNs with good specification 
should have less hidden units and high prediction 
accuracy. So, the effective number of the hidden 
neurons is a relatively small number. 

 Pursuant to that, each hidden neuron is allocated
 to respond to each of sub-spaces of the input regions,
 formed by the clusters of training samples [19-21]. The
 advantages and the importance of the RBFNNs comes
 from that they have a simple topological structure and
 their ability to reveal how learning proceeds in an
 explicit manner.
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Fig. 1: Structure of a radial basis function network

The output neuron  L  represents a map F that 
satisfies the interpolation condition

( ) ,  i 1,...,L i iLF x d R= = (1)
Where: 

• { , 1,...,  }N
ix i R∈ℜ = is the input data set, 

•  { ,  1,..., }iLd i R∈ℜ = is a corresponding output 
target set in the output neuron L .

•  { ( ) : ,  1,..., }N
L iF x i Rℜ →ℜ =  is a 

corresponding output actual set in the output 
neuron L . 

• The interpolating function 
LF  has to pass through 

all the training data points. Accordingly, the radial 
basis function neural network technique has the 
following form

• 1
( ) ( )

J

L mL m
m

F x w xϕ
=

=∑
                          (2)

Where: 

• ( )LF x is the actual output value of the output 
neuron L which corresponds to the input value 

Nx ∈ℜ . 

• mLw is the output weight between the hidden 
neuron m  and the output neuron L . 

• mϕ is the activation function in hidden neuron m
. 

• J is the number of hidden neurons. 

The following equation gives the 
activation function (Gaussian function) which 
is used in RBFNN [18].  
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Where: 

•	 mϕ is the radial basis function in hidden neuron

m  . 

•	 mc  and 2
mσ are the center and the width of the 

hidden neuron m  respectively.

•	
1 2( , ,..., )Nx x x x=  is a value entered in the 

input layer. 

•	 'hmw is the constant input weight between the 

input neuron h and the hidden neuron m . 

The training sets in RBFNN is labeled pairs 
{ ( , ),  1,...,i ix d i R= }, where R  is the number 
of data sets [16,18,22]. In other words, it represents 
associations for a given finite set of input–output data. 

As mention above, id is the target output value which 

corresponds to the input data ix . The actual output 
value is represented by the map

LF  that is encoded with 
the binary values{0,1} . 0 and 1 are used to emphasize 
“false” and “true” respectively. The difference between 
the actual values and the output target values can be 
obtained by using a differentiable function, such as the 
sum of squared error function [23].

2. Prey-Predator Algorithm 

Two important areas in neural networks are 
optimization and validation. On the optimization 
aspect, the efforts are directed towards building 
networks that are efficient and fast. On the validation 
aspect, the networks need to be functionally correct.

Prey-Predator algorithm (PPA) is a new 
metaheuristic algorithm introduced by Tilahun and Ong 
[5,6,24] for optimization problems. It is inspired by the 
interaction between a predator and preys of animals in 
the ecosystem. Randomly generated solutions will be 
assigned as a predator and preys depending on their 
performance on the objective function. A solution with 
least performance will be assigned as a predator and 
the others preys. A prey with better performance of 
the objective function will be called best prey. After 
the assignment of predator and preys, the preys will 

run away from the predator and follow preys with 
better performance. The predator does the exploration 
by running randomly and chasing the prey with least 
performance. The best prey in the other hand does only 
a local search for exploitation purpose. 

PPA is a more general algorithm which will 
coverage to other algorithms under different values 
for the algorithm parameters. It has also been tested 
on different problems including public bus timetabling 
and gives promising results [6]. PPA is effective 
and suitable for use in many areas of science and 
engineering [5,25]

3. Logic programming and the Satisfiability

      4.1 Logic programming 

Logic programming seems to use like the relational 
database, and  certainly has several properties because 
the knowledge about it is easy to change [1,2,12]. 
Propositional logic programming is built up from 
propositional variables (Boolean variables) through 
the use of the Boolean connectives ( , , ,∧ ∨ ← ¬ ), 
where the Propositional variables can be assigned by 
values:  True or False. A proportional logic program 
consists of a set of logic clauses each one of the forms:

1 1 1
A B   

k r n

i j ji j j r
B

= = = +
∨ ← ∧ ¬ ∧

                        (4)

where

, ,k r n +∈Z . iA∀  and jB∀  are atoms.  The 
arrow may be read “if”, the symbols ∨  and ∧  read 
“or “and” and” respectively.

Clauses can be either represented in Disjunctive 
(logic or) Normal Form (DNF) or Conjunctive (logic 
and) Normal Form (CNF), which is widely being 
used to represent clauses. A clause is in CNF if it is 

in form 1
,

n

ii
A n +

=
∨ ∈Z

, where iA a literal. So, a logic 
programming is in DNF if and only if has the form 

1
, ,

n

ii
P F n +

=
= ∧ ∈Z  where iF  is a clause in CNF. 

A logic programming is in the 3-CNF if each clause 
consists of three literals as maximum. 3-satisfiability 
problem or 3-SAT problem is a mapping problem from 
a logic programming in 3-conjunctive normal form (3-
CNF) to “truth values” (1 and 0), which refer to true 
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and false respectively. A logic programming P  is 
satisfiable, if and only if there is a substitution of “truth 
values” for its literals that makes it true. 

Quantified Boolean formula (QBF) is a 
proportional logic programming with existential 
quantification and universal quantification. However, 
propositional logic programming is equivalent to QBF 
with only existentially quantified variables.  QBF can 
be used to solve many practical problems ranging 
from artificial intelligent (AI) planning.  QBF [26,27] 

has the form: q F
←

, where F  is a propositional 

logic programming expressed in CNF, and q
←

 is a 
sequence of universal quantifier (∀ ) and existential 
Quantifier (∃ ). For example,  ( , )x y Like x y∀ ∃

means ‘’ for all x, there exist at least one y like x’’. 
We can replace the positions of the same type of the 
quantifiers without affecting the truth value, while the 
positions of different types of quantifiers cannot be 
switched. For example   ( , )x y greater x y∀ ∃   is 
not equivalent to   ( , )y x greater x y∃ ∀ . Then  

 ( , )x y greater x y∀ ∃  reads “for every number x, 
there is a number y that is greater than x”, which is 
true, while   ( , )y x greater x y∃ ∀  reads “there is a 
number y that is greater than any number”, which is 
not true.  

First-Order Logic extends Propositional Logic with 
predicates, functions, and quantifiers [11]. Predicates 
have a value of true or false, where it can take 
arguments, which are terms. On the other hand, the 
functions are given values in the logic programming.  
The terms evaluate to values other than truth values 
such as integers, real numbers, and functions applied 
to variables and constants. For example, the sentence 
(Anyone succeed in computer science exams and 
winning the lottery is happy) is represented in First-
Order Logic (FOL), as

  ( , )  ( , )
( )

x Succeed Computers x Win Lottery x
Happy x

∀ ∧
→

  (5)

4.2 Satisfiability 

    A propositional logic programming is said to be 
satisfiable if there is an assignment of truth values 
to its literals in a way that makes the programming 
true. Satisfiability or SAT problem is an example of 
NP-complete problems. NP-complete problems are 

decision problems that have only two outputs values, 
which are 1 and 0, which refer to true and false 
respectively. SAT can be used to solve many practical 
problems. The logic programming below represents the 
general form of 3-SAT Boolean formula that consists 
of (N) clause; each one consists of three literals. Note 
that, each literal is either an atom or negated atom.

11 12 13

21 22 23

1 2 3

( )
( )
       
( )N N N

P A A A
A A A

A A A

= ∨ ∨ ∧
∨ ∨ ∧

∨ ∨


                 (6)

For example, the following below is an unsatisfiable 
3-SAT logic programming with 12 literals, 5 clauses, 
and 3 variables. This logic programming can be seen 
to be unsatisfiable by inspection: the first and second 
clause requires (respectively) that at least one variable 
is true and at least one variable is false, whereas the last 
three clauses (together) require that all variables have 
the same truth value.

( ) ( ) ( ) ( )P A B C A B C A B C A= ¬ ∨¬ ∨¬ ∧ ∨ ∨ ∧ ∨¬ ∧ ∨¬        (7)

QBF solvers are used to answer the question of 

whether or not q F
←

is true or false. The satisfiability 
problem (SAT) is QBF solvers under the restriction all 
variables are existential. QBF solver is slower than 
SAT because; the search must solve both settings of 
every universal variable. A formula [ / ] F T A is 
obtained by setting variable A to the value 1 (True) 
in F . A formula AF∃ is true if and only if at least 
one of [ / ] F T A and [ / ]F A⊥ is true.  Similarly, 

[ / ]F A⊥ is obtained by setting variable A to the 
value 0 (False) in F . And also, a formula AP∀ is 
true if and only if [ / ] F T A and [ / ]F A⊥ are true. 
To determine [ / ]F T A  in CNF, we have two steps

•	 Removing all the clauses in logic programming 
F  that contain A.

•	 Deleting ￢A from all the clauses that contain 
￢A.

The simplest QBF solver is called semantic tree 
method [28]. This method is a very well-known 
method in logic. The method is an automatic 
method of semantic analysis, which consists of 
determining the logical values of sub formulas of a 
given formula. The evaluation of the following QBF, 
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within the semantic tree method, is illustrated in Fig. 
2.

1 2 3 2 1 2 3(( ) ( ))P A A A A A A A= ∃ ∃ ∀ ← ∧ ← is satisfiable if 
and only if both of [ / ]  F T A and [ / ]F A⊥ are true.

A1=0
A1=1 A1=0 A1=1

Satisfying leaf

Conflicting Leaf

Universal branch, it is true if both sub trees are true

Existential branch, it is true if either sub tree is true.

A2=0A2=1

A3=1

A3=0

A2=1
A2=1

Fig. 2: A semantic tree proof of the stability of 

1 2 3 2 1 2 3(( ) ( ))P A A A A A A A= ∃ ∃ ∀ ← ∧ ← .

    In AI, a proof must always be built from a fixed 
set of inference rules. DPLL algorithm has been used 
widely  as a complete (it finds a solution if one exists; 
otherwise correctly says that no solution exists) and 
efficient procedure to solve SAT [14]. The basic idea of 
the SAT-DPLL algorithm is: 

i. Given a logic programming P in CNF.

ii. Assign a truth value for a variable.

iii. Find the set of all unit clauses created 
from step ii. A unite clause is a clause which has 
exactly one literal, which is still unassigned. Note 
that the literals assign the needed value.

iv. Iteratively retry step ii until there is no 
change (found transitive closure) If the current 
assignment cannot yield true for all clauses - 
fold back from recursion and retry a different 
assignment else - “guess” another variable 
(recursively invoke and return to 1. 

4. 3-QBF solvers based on RBFNNs and 
PPA

    Deciding the stability of QBF problem is an 
extension of the Boolean Satisfiability problem. So, 
Boolean Satisfiability problem (SAT) is QBF under the 

restriction all variables are existential. QBF problem 
is in practice much harder to solve than SAT.  In this 
paper, we present a new algorithm used to check the 
stability of logic programming. Firstly, we used it as a 
SAT solver, and then we used it as a QBF solver. The 
new algorithm is based on radial basis function neural 
networks.  The following is the outline of the new SAT 
algorithm, which is based on RBFNNs (SAT-RBFNNs). 
After that, we developed it to be 3SAT-RBFNNs. 
This is done by reduction the logic programming, for 
example, the reduction of a formula F  by a literal A  
is denoted by [ / ]F T A or [ / ]F A⊥ . To determine 

[ / ]F T A  in CNF, we have two steps; removing all 
the clauses in logic programming F that contain A, and 
also, deleting A¬ from all the clauses in F.  After that, 
we extended the algorithm to use as a QBF solver.  In 
this case, we used recurrent radial basis function neural 
networks (RRBFNNs) to deal with universal variables. 
The steps below are the outline of SAT-RBFNNs 
algorithm.

i) Given a logic programming in CNF.

ii) Calculate the training data for each 
clause in the logic programming [29]. We used 
the following equation to determine the training 
data for each clause.

1 2 1 2
1 1

( , ,..., , , ,..., )
n m

Z n m i i
i i

F A A A B B B A B
= =

= −∑ ∑                (8)

where 1 2 1 2{ , ,..., , , ,..., }n mA A A B B B are all literals 

in clause Z and 1 2{ , ,..., }nA A A is the set of atoms, 

while 1 2{ , ,..., }mB B B is the set of negated atoms. 

ZF is the actual output data which corresponding to  

1 2 1 2{ , ,..., , , ,..., }n mA A A B B B . We have replaced 
⊥ and T by 0 and 1 respectively, to emphasize “false” 
and “true”. 

iii) Building a RBFNN initial structure represents 
the logic programming. We identify an input neuron 
for each variable, and output neuron for each clause.  

iv) Obtain parameters of the RBFNN by using a 
neural learning algorithm, such as PPA.

The 3SAT-RBFNNs can be optimized as follows 

i) Given a logic programming in CNF.
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ii) Convert the logic programming into 3-CNF. 
The reduction of a formula F  by a literal A  is 
denoted by [ / ]F T A or [ / ]F A⊥ .

iii) Building a RBFNN initial structure represents 
the logic programming. We identify an input neuron 
for each variable, and output neuron for each clause.

iv) Since the logic programming is in 3-CNF, 
the values of the parameters in the RBFNN can be 
obtained from Table 1. 

The semantics of a QBF can be defined recursively in 
the following way:

•	 If F is the empty set of clauses then q F
←

is 
true. 

•	 If F  contains an empty clause then q F
←

is 
false. 

•	 A formula AF∀ is true if and only if 
[ / ]  [ / ]F T A F A∧ ⊥ are true. 

•	 A formula AF∃ is true if and only if 
[ / ]  [ / ]F T A F A∨ ⊥ is true. 

The main difference between SAT-solver and QBF-
solver is with the solutions of QBF in order to verify 
both settings of each universally quantified variable. 
So, to use SAT-solver to solve the QBF problem, we 
reduce a formula by universal variables. In this case, 
the algorithm is called   QBF-RBFNNs.

The following is the outline of the new 3QBF-RBFNNs 
algorithm:

i) Given a logic programming in CNF.

ii) Reduction of a formula F  by universal 
literals. 

iii) Convert the logic programming into 3-CNF.

iv) Building a RBFNN initial structure represents 
the logic programming. We identify an input 
neuron for each variable, and output neuron 
for each clause.

v) Since the logic programming is in 3-CNF, the 
values of the parameters in the RBFNN can 
be obtained from the Table 1. 

Table 1: the parameters of the RBFNNs which represent 3-CNF, 
by using PPA

 3CNF clause
centers:

1 2 3, ,C C C
widths

2 2 2
1 2 3, ,σ σ σ

weight

1 2 3, ,W W W
SSE

1 2 3A A A∨ ∨

1.0000,
1.9647,
 2.9493

0.0276,
 0.8861,
 0.6650

 0.5487,
0.6612,
0.6267

0.0017

1 2 3A A A∨ ∨¬

0.0599,
0.9597,
1.9554

0.0757,
0.9173,
0.6634

0.5644,
0.6508,
0.6301

0.0020

1 2 3A A A∨¬ ∨¬

0.0607,
0.9600,
1.9557 

0.0770,
0.9181,
0.6631

0.5640,
0.6505,
0.6296

0.0020

1 2 3A A A¬ ∨¬ ∨¬

-2.0014,
-1.1313,
 0.0399

0.0332,
0.9592,
0.6678

0.5051,
0.6669,

  0.6654
0.0035

     To see the evaluation of

1 2 3 4 1 4 2 2 3 2 3

1 4 2

(( ) ( ) ( )
( )

F A A A A A A A A A A A
A A A
= ∃ ∃ ∃ ∀ ¬ ∨ ∨¬ ∧ ∨¬ ∧ ∨

∧ ∨¬ ∨¬
 (9)

We have using the 3QBF-RBFNNs, we follow the 
following steps. 

i) As mentioned, the logic programming should 
be in CNF. So, the first step is already done, 
because the formula is in 3-CNF, where each 
clause have at most 3 literals.

ii) Reduction of a formula F  by universal 
literals, where we have only one universal 

variable, which is 4A . Accordingly, we 
determine 

4 4[ / ]  [ / ]F T A F A∧ ⊥
, because the formula F is true iff  

4 4[ / ]  [ / ]F T A F A∧ ⊥  is true. As 
mentioned,  

4[ / ]F T A  is equivalent to F  

with deleting the clauses which contain 4A , 
and also deleting 

4A¬ from all clauses in F .

5. Conclusions 

We presented a new QBF-solver based on 
RRNFNNs.  The new technique is also used as a new 
SAT-solver. The main importance of this technique 
is open a new field in computing the stability within 
the artificial neural networks.   This technique is also 
suitable to use in the first order logic programming.  
In this study, the key components are RBFNNs, PPA, 
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and 3-CNF.  We determine the RBFNNs parameters 
which represent the 3-SAT, by using PPA. A large 
number of applications can be represented by the 
new methods such applications of SAT, planning 
problems, NP-complete problems and electronic 
circuits.  
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