
Journal of Engineering and Applied Sciences, Vol. 4, Issue (1) May, 2017

1

Solving Satisfiability Logic Programming Using Radial Basis
Function Neural Networks

Nawaf Hamadneh
College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia, nhamadneh@seu.edu.sa

Saratha Sathasivam

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, saratha@usm.my

Abstract

We proposed a new technique to solve QBF based on Radial basis function neural networks (RBFNNs) and Prey-
Predator algorithm (PPA). Prey-Predator algorithm (PPA) is a neural learning algorithm used to determine the
parameters of the networks. We built the neural networks to represent the logic programming in Conjunctive Normal
Form (CNF), which has at most three variables in each clause (3-CNF). Then, these neural networks are developed to
be recurrent neural networks to deal with universal variables in QBF problems. The neural networks models can be
applied to solve a wide range of practical applications of Satisfiability logic programming, such as NP-complete decision
problem, and computer network design.

 Keywords: logic programming; Satisfiability; Radial basis function neural network, Prey-Predator algorithm

1. Introduction

Logic programming is used to describe relations,
and have both a declarative and an operational
meaning [1,2]. The general objective of artificial neural
network is stored experiential knowledge and makes
it available for use, similar to the brain. It acquires
knowledge through the learning process, and use the
power of communication between artificial neurons to
store knowledge. The advantages and the importance
of the RBFNNs come from that they have a simple
topological structure , faster learning algorithms, high
approximation capability, and have been widely
applied in many science and engineering fields [3-5].

Prey-Predator algorithm (PPA) is a new
metaheuristic algorithm, introduced by Tilahun and
Ong (2012) [6]. PPA is developed for optimization
problems such as particle swarm optimization algorithm
[5,7,8]. The algorithm is a more general algorithm
where some of well-known algorithms, including
simulated annealing, particle swarm optimization,
firefly algorithm and evolutionary strategy, become a
special case [7,9] . It is inspired by how the predators
run after their prey and how the preys try to survive in
the ecosystem.

A proportional logic programming is a set of
axioms, clauses, or rules which in turn consist of
Boolean variables (literals), i.e. atoms and negated
atoms only (negation is denoted by ¬) [2,10,11].
Quantified Boolean formula or QBF) is an extension

of propositional logic programming in Conjunctive
Normal Form (CNF) [1,11,12]. QBF is a proportional
logic programming with existential quantification and
universal quantification. The algorithms which are
used to check the stability of the logic programming
are called Satisfiability or SAT solvers [13]. In practice,
SAT is fundamental in solving many problems, such
as, circuit design, and computer network design. The
simplest SAT solver is called the truth-table method.
It constructs the full table, which will have 2n rows
when P has n variables, and report whether the final
column, representing P has value 1 in any row. Davis
Putnam Logemann Loveland (DPLL) algorithm
[14] works on the principle of assigning variables,
simplifying the formula to account for that assignment
and then recursively solving the simplified formula.
Zhang and Malik have developed a new method for
evaluating QBF [1]. This method is based on the DPLL
algorithm. Their experiments show that conflict driven
learning strategies, when adapted in a QBF solver, can
speed up the search process vastly. But still the most
used strategy for SAT solvers.

In this paper, we presented a novel preprocessing
technique for QBF based on RBFNNs Prey-Predator
algorithm (PPA-RBFNNs), with commercial software
MATLAB®. It is the extension of that conference paper
with additional of discussion [15]. PPA is selected on
the basis that it is a new generalized algorithm and
gives promising results when tested on benchmark
problems as well as modeled transportation and
engineering problems [6]. The outline of the paper

Nawaf Hamadneh and Saratha Sathasivam: Solving Satisfiability Logic Programming Using Radial Basis Function Neural Networks

Journal of Engineering and Applied Sciences, Vol. 4, Issue (1) May, 2017

2

is as follows. In section 2 a brief introduction on
radial basis function neural network will be discussed
followed by pray predator algorithm in section 3. In
section 4, Logic programming, QBF solvers and first
order logic programming are discussed. In section 5,
3-QBF solvers based on RBFNNs and PPA is proposed
with details. At the end there will be a conclusion in
section 6.

1. Radial basis function neural networks

 A RBFNN in its form consists of three layers, namely,
input layer, hidden layer, and the output layer. Each
hidden neuron implements a nonlinear activation
function and each output neuron implements a
weighted sum of hidden neuron outputs. The activation
functions in the hidden layer, such as Gaussian
function, are also called radial basis function. RBFNN
has typically three layers [16,17]: namely, an input
layer, a hidden layer [18] and a linear output layer, as
shown in Fig. 1. The hidden layer neurons receive the
input information, followed by certain decomposition,
extraction, and transformation steps to generate the
output information. RBFNNs with good specification
should have less hidden units and high prediction
accuracy. So, the effective number of the hidden
neurons is a relatively small number.

 Pursuant to that, each hidden neuron is allocated
 to respond to each of sub-spaces of the input regions,
 formed by the clusters of training samples [19-21]. The
 advantages and the importance of the RBFNNs comes
 from that they have a simple topological structure and
 their ability to reveal how learning proceeds in an
 explicit manner.

.

.

.

1ϕ

2ϕ

.

.

.
j

ϕ

'
11w

'
21w

'
 1Nw

11w

21w

'
 N jw

1jw

.

.

.
.
.
.

1' jw

1
ix

2
ix

N
ix

.

.

.

Fig. 1: Structure of a radial basis function network

The output neuron L represents a map F that
satisfies the interpolation condition

() , i 1,...,L i iLF x d R= = (1)
Where:

• { , 1,..., }N
ix i R∈ℜ = is the input data set,

• { , 1,..., }iLd i R∈ℜ = is a corresponding output
target set in the output neuron L .

• { () : , 1,..., }N
L iF x i Rℜ →ℜ = is a

corresponding output actual set in the output
neuron L .

• The interpolating function
LF has to pass through

all the training data points. Accordingly, the radial
basis function neural network technique has the
following form

• 1
() ()

J

L mL m
m

F x w xϕ
=

=∑
 (2)

Where:

• ()LF x is the actual output value of the output
neuron L which corresponds to the input value

Nx ∈ℜ .

• mLw is the output weight between the hidden
neuron m and the output neuron L .

• mϕ is the activation function in hidden neuron m
.

• J is the number of hidden neurons.

The following equation gives the
activation function (Gaussian function) which
is used in RBFNN [18].

2

1
2

(' *)

2()

N
h

hm m
h

m

w x c

m x e σϕ
=

−

−
∑

= (3)

Nawaf Hamadneh and Saratha Sathasivam: Solving Satisfiability Logic Programming Using Radial Basis Function Neural Networks

Journal of Engineering and Applied Sciences, Vol. 4, Issue (1) May, 2017

3

Where:

•	 mϕ is the radial basis function in hidden neuron

m .

•	 mc and 2
mσ are the center and the width of the

hidden neuron m respectively.

•	
1 2(, ,...,)Nx x x x= is a value entered in the

input layer.

•	 'hmw is the constant input weight between the

input neuron h and the hidden neuron m .

The training sets in RBFNN is labeled pairs
{ (,), 1,...,i ix d i R= }, where R is the number
of data sets [16,18,22]. In other words, it represents
associations for a given finite set of input–output data.

As mention above, id is the target output value which

corresponds to the input data ix . The actual output
value is represented by the map

LF that is encoded with
the binary values{0,1} . 0 and 1 are used to emphasize
“false” and “true” respectively. The difference between
the actual values and the output target values can be
obtained by using a differentiable function, such as the
sum of squared error function [23].

2. Prey-Predator Algorithm

Two important areas in neural networks are
optimization and validation. On the optimization
aspect, the efforts are directed towards building
networks that are efficient and fast. On the validation
aspect, the networks need to be functionally correct.

Prey-Predator algorithm (PPA) is a new
metaheuristic algorithm introduced by Tilahun and Ong
[5,6,24] for optimization problems. It is inspired by the
interaction between a predator and preys of animals in
the ecosystem. Randomly generated solutions will be
assigned as a predator and preys depending on their
performance on the objective function. A solution with
least performance will be assigned as a predator and
the others preys. A prey with better performance of
the objective function will be called best prey. After
the assignment of predator and preys, the preys will

run away from the predator and follow preys with
better performance. The predator does the exploration
by running randomly and chasing the prey with least
performance. The best prey in the other hand does only
a local search for exploitation purpose.

PPA is a more general algorithm which will
coverage to other algorithms under different values
for the algorithm parameters. It has also been tested
on different problems including public bus timetabling
and gives promising results [6]. PPA is effective
and suitable for use in many areas of science and
engineering [5,25]

3. Logic programming and the Satisfiability

 4.1 Logic programming

Logic programming seems to use like the relational
database, and certainly has several properties because
the knowledge about it is easy to change [1,2,12].
Propositional logic programming is built up from
propositional variables (Boolean variables) through
the use of the Boolean connectives (, , ,∧ ∨ ← ¬),
where the Propositional variables can be assigned by
values: True or False. A proportional logic program
consists of a set of logic clauses each one of the forms:

1 1 1
A B

k r n

i j ji j j r
B

= = = +
∨ ← ∧ ¬ ∧

 (4)

where

, ,k r n +∈Z . iA∀ and jB∀ are atoms. The
arrow may be read “if”, the symbols ∨ and ∧ read
“or “and” and” respectively.

Clauses can be either represented in Disjunctive
(logic or) Normal Form (DNF) or Conjunctive (logic
and) Normal Form (CNF), which is widely being
used to represent clauses. A clause is in CNF if it is

in form 1
,

n

ii
A n +

=
∨ ∈Z

, where iA a literal. So, a logic
programming is in DNF if and only if has the form

1
, ,

n

ii
P F n +

=
= ∧ ∈Z where iF is a clause in CNF.

A logic programming is in the 3-CNF if each clause
consists of three literals as maximum. 3-satisfiability
problem or 3-SAT problem is a mapping problem from
a logic programming in 3-conjunctive normal form (3-
CNF) to “truth values” (1 and 0), which refer to true

Nawaf Hamadneh and Saratha Sathasivam: Solving Satisfiability Logic Programming Using Radial Basis Function Neural Networks

Journal of Engineering and Applied Sciences, Vol. 4, Issue (1) May, 2017

4

and false respectively. A logic programming P is
satisfiable, if and only if there is a substitution of “truth
values” for its literals that makes it true.

Quantified Boolean formula (QBF) is a
proportional logic programming with existential
quantification and universal quantification. However,
propositional logic programming is equivalent to QBF
with only existentially quantified variables. QBF can
be used to solve many practical problems ranging
from artificial intelligent (AI) planning. QBF [26,27]

has the form: q F
←

, where F is a propositional

logic programming expressed in CNF, and q
←

 is a
sequence of universal quantifier (∀) and existential
Quantifier (∃). For example, (,)x y Like x y∀ ∃

means ‘’ for all x, there exist at least one y like x’’.
We can replace the positions of the same type of the
quantifiers without affecting the truth value, while the
positions of different types of quantifiers cannot be
switched. For example (,)x y greater x y∀ ∃ is
not equivalent to (,)y x greater x y∃ ∀ . Then

 (,)x y greater x y∀ ∃ reads “for every number x,
there is a number y that is greater than x”, which is
true, while (,)y x greater x y∃ ∀ reads “there is a
number y that is greater than any number”, which is
not true.

First-Order Logic extends Propositional Logic with
predicates, functions, and quantifiers [11]. Predicates
have a value of true or false, where it can take
arguments, which are terms. On the other hand, the
functions are given values in the logic programming.
The terms evaluate to values other than truth values
such as integers, real numbers, and functions applied
to variables and constants. For example, the sentence
(Anyone succeed in computer science exams and
winning the lottery is happy) is represented in First-
Order Logic (FOL), as

 (,) (,)
()

x Succeed Computers x Win Lottery x
Happy x

∀ ∧
→

 (5)

4.2 Satisfiability

 A propositional logic programming is said to be
satisfiable if there is an assignment of truth values
to its literals in a way that makes the programming
true. Satisfiability or SAT problem is an example of
NP-complete problems. NP-complete problems are

decision problems that have only two outputs values,
which are 1 and 0, which refer to true and false
respectively. SAT can be used to solve many practical
problems. The logic programming below represents the
general form of 3-SAT Boolean formula that consists
of (N) clause; each one consists of three literals. Note
that, each literal is either an atom or negated atom.

11 12 13

21 22 23

1 2 3

()
()

()N N N

P A A A
A A A

A A A

= ∨ ∨ ∧
∨ ∨ ∧

∨ ∨

 (6)

For example, the following below is an unsatisfiable
3-SAT logic programming with 12 literals, 5 clauses,
and 3 variables. This logic programming can be seen
to be unsatisfiable by inspection: the first and second
clause requires (respectively) that at least one variable
is true and at least one variable is false, whereas the last
three clauses (together) require that all variables have
the same truth value.

() () () ()P A B C A B C A B C A= ¬ ∨¬ ∨¬ ∧ ∨ ∨ ∧ ∨¬ ∧ ∨¬ (7)

QBF solvers are used to answer the question of

whether or not q F
←

is true or false. The satisfiability
problem (SAT) is QBF solvers under the restriction all
variables are existential. QBF solver is slower than
SAT because; the search must solve both settings of
every universal variable. A formula [/] F T A is
obtained by setting variable A to the value 1 (True)
in F . A formula AF∃ is true if and only if at least
one of [/] F T A and [/]F A⊥ is true. Similarly,

[/]F A⊥ is obtained by setting variable A to the
value 0 (False) in F . And also, a formula AP∀ is
true if and only if [/] F T A and [/]F A⊥ are true.
To determine [/]F T A in CNF, we have two steps

•	 Removing all the clauses in logic programming
F that contain A.

•	 Deleting ￢A from all the clauses that contain
￢A.

The simplest QBF solver is called semantic tree
method [28]. This method is a very well-known
method in logic. The method is an automatic
method of semantic analysis, which consists of
determining the logical values of sub formulas of a
given formula. The evaluation of the following QBF,

Nawaf Hamadneh and Saratha Sathasivam: Solving Satisfiability Logic Programming Using Radial Basis Function Neural Networks

Journal of Engineering and Applied Sciences, Vol. 4, Issue (1) May, 2017

5

within the semantic tree method, is illustrated in Fig.
2.

1 2 3 2 1 2 3(() ())P A A A A A A A= ∃ ∃ ∀ ← ∧ ← is satisfiable if
and only if both of [/] F T A and [/]F A⊥ are true.

A1=0
A1=1 A1=0 A1=1

Satisfying leaf

Conflicting Leaf

Universal branch, it is true if both sub trees are true

Existential branch, it is true if either sub tree is true.

A2=0A2=1

A3=1

A3=0

A2=1
A2=1

Fig. 2: A semantic tree proof of the stability of

1 2 3 2 1 2 3(() ())P A A A A A A A= ∃ ∃ ∀ ← ∧ ← .

 In AI, a proof must always be built from a fixed
set of inference rules. DPLL algorithm has been used
widely as a complete (it finds a solution if one exists;
otherwise correctly says that no solution exists) and
efficient procedure to solve SAT [14]. The basic idea of
the SAT-DPLL algorithm is:

i. Given a logic programming P in CNF.

ii. Assign a truth value for a variable.

iii. Find the set of all unit clauses created
from step ii. A unite clause is a clause which has
exactly one literal, which is still unassigned. Note
that the literals assign the needed value.

iv. Iteratively retry step ii until there is no
change (found transitive closure) If the current
assignment cannot yield true for all clauses -
fold back from recursion and retry a different
assignment else - “guess” another variable
(recursively invoke and return to 1.

4. 3-QBF solvers based on RBFNNs and
PPA

 Deciding the stability of QBF problem is an
extension of the Boolean Satisfiability problem. So,
Boolean Satisfiability problem (SAT) is QBF under the

restriction all variables are existential. QBF problem
is in practice much harder to solve than SAT. In this
paper, we present a new algorithm used to check the
stability of logic programming. Firstly, we used it as a
SAT solver, and then we used it as a QBF solver. The
new algorithm is based on radial basis function neural
networks. The following is the outline of the new SAT
algorithm, which is based on RBFNNs (SAT-RBFNNs).
After that, we developed it to be 3SAT-RBFNNs.
This is done by reduction the logic programming, for
example, the reduction of a formula F by a literal A
is denoted by [/]F T A or [/]F A⊥ . To determine

[/]F T A in CNF, we have two steps; removing all
the clauses in logic programming F that contain A, and
also, deleting A¬ from all the clauses in F. After that,
we extended the algorithm to use as a QBF solver. In
this case, we used recurrent radial basis function neural
networks (RRBFNNs) to deal with universal variables.
The steps below are the outline of SAT-RBFNNs
algorithm.

i) Given a logic programming in CNF.

ii) Calculate the training data for each
clause in the logic programming [29]. We used
the following equation to determine the training
data for each clause.

1 2 1 2
1 1

(, ,..., , , ,...,)
n m

Z n m i i
i i

F A A A B B B A B
= =

= −∑ ∑ (8)

where 1 2 1 2{ , ,..., , , ,..., }n mA A A B B B are all literals

in clause Z and 1 2{ , ,..., }nA A A is the set of atoms,

while 1 2{ , ,..., }mB B B is the set of negated atoms.

ZF is the actual output data which corresponding to

1 2 1 2{ , ,..., , , ,..., }n mA A A B B B . We have replaced
⊥ and T by 0 and 1 respectively, to emphasize “false”
and “true”.

iii) Building a RBFNN initial structure represents
the logic programming. We identify an input neuron
for each variable, and output neuron for each clause.

iv) Obtain parameters of the RBFNN by using a
neural learning algorithm, such as PPA.

The 3SAT-RBFNNs can be optimized as follows

i) Given a logic programming in CNF.

Nawaf Hamadneh and Saratha Sathasivam: Solving Satisfiability Logic Programming Using Radial Basis Function Neural Networks

Journal of Engineering and Applied Sciences, Vol. 4, Issue (1) May, 2017

6

ii) Convert the logic programming into 3-CNF.
The reduction of a formula F by a literal A is
denoted by [/]F T A or [/]F A⊥ .

iii) Building a RBFNN initial structure represents
the logic programming. We identify an input neuron
for each variable, and output neuron for each clause.

iv) Since the logic programming is in 3-CNF,
the values of the parameters in the RBFNN can be
obtained from Table 1.

The semantics of a QBF can be defined recursively in
the following way:

•	 If F is the empty set of clauses then q F
←

is
true.

•	 If F contains an empty clause then q F
←

is
false.

•	 A formula AF∀ is true if and only if
[/] [/]F T A F A∧ ⊥ are true.

•	 A formula AF∃ is true if and only if
[/] [/]F T A F A∨ ⊥ is true.

The main difference between SAT-solver and QBF-
solver is with the solutions of QBF in order to verify
both settings of each universally quantified variable.
So, to use SAT-solver to solve the QBF problem, we
reduce a formula by universal variables. In this case,
the algorithm is called QBF-RBFNNs.

The following is the outline of the new 3QBF-RBFNNs
algorithm:

i) Given a logic programming in CNF.

ii) Reduction of a formula F by universal
literals.

iii) Convert the logic programming into 3-CNF.

iv) Building a RBFNN initial structure represents
the logic programming. We identify an input
neuron for each variable, and output neuron
for each clause.

v) Since the logic programming is in 3-CNF, the
values of the parameters in the RBFNN can
be obtained from the Table 1.

Table 1: the parameters of the RBFNNs which represent 3-CNF,
by using PPA

 3CNF clause
centers:

1 2 3, ,C C C
widths

2 2 2
1 2 3, ,σ σ σ

weight

1 2 3, ,W W W
SSE

1 2 3A A A∨ ∨

1.0000,
1.9647,
 2.9493

0.0276,
 0.8861,
 0.6650

 0.5487,
0.6612,
0.6267

0.0017

1 2 3A A A∨ ∨¬

0.0599,
0.9597,
1.9554

0.0757,
0.9173,
0.6634

0.5644,
0.6508,
0.6301

0.0020

1 2 3A A A∨¬ ∨¬

0.0607,
0.9600,
1.9557

0.0770,
0.9181,
0.6631

0.5640,
0.6505,
0.6296

0.0020

1 2 3A A A¬ ∨¬ ∨¬

-2.0014,
-1.1313,
 0.0399

0.0332,
0.9592,
0.6678

0.5051,
0.6669,

 0.6654
0.0035

 To see the evaluation of

1 2 3 4 1 4 2 2 3 2 3

1 4 2

(() () ()
()

F A A A A A A A A A A A
A A A
= ∃ ∃ ∃ ∀ ¬ ∨ ∨¬ ∧ ∨¬ ∧ ∨

∧ ∨¬ ∨¬
 (9)

We have using the 3QBF-RBFNNs, we follow the
following steps.

i) As mentioned, the logic programming should
be in CNF. So, the first step is already done,
because the formula is in 3-CNF, where each
clause have at most 3 literals.

ii) Reduction of a formula F by universal
literals, where we have only one universal

variable, which is 4A . Accordingly, we
determine

4 4[/] [/]F T A F A∧ ⊥
, because the formula F is true iff

4 4[/] [/]F T A F A∧ ⊥ is true. As
mentioned,

4[/]F T A is equivalent to F

with deleting the clauses which contain 4A ,
and also deleting

4A¬ from all clauses in F .

5. Conclusions

We presented a new QBF-solver based on
RRNFNNs. The new technique is also used as a new
SAT-solver. The main importance of this technique
is open a new field in computing the stability within
the artificial neural networks. This technique is also
suitable to use in the first order logic programming.
In this study, the key components are RBFNNs, PPA,

Nawaf Hamadneh and Saratha Sathasivam: Solving Satisfiability Logic Programming Using Radial Basis Function Neural Networks

Journal of Engineering and Applied Sciences, Vol. 4, Issue (1) May, 2017

7

and 3-CNF. We determine the RBFNNs parameters
which represent the 3-SAT, by using PPA. A large
number of applications can be represented by the
new methods such applications of SAT, planning
problems, NP-complete problems and electronic
circuits.

Referances

[1]. Zhang L, Malik S. Towards a symmetric treatment
of satisfaction and conflicts in quantified Boolean
formula evaluation; 2006. Springer. pp. 313-318.

[2]. Kowalski R (1979) Algorithm= logic+ control.
Communications of the ACM 22: 424-436.

[3]. Wen S, Huang T, Zeng Z, Chen Y, Li P (2015)
Circuit design and exponential stabilization of
memristive neural networks. Neural Networks 63:
pp. 48-56.

[4]. Abdurahman A, Jiang H, Teng Z (2015) Finite-
time synchronization for memristor-based neural
networks with time-varying delays. Neural
Networks 69: pp.20-28.

[5]. Nawaf Hamadneh SLT, Saratha Sathasivam and
Ong Hong Choon (2013) Prey-Predator Algorithm
as a New Optimization Technique Using in Radial
Basis Function Neural Networks. Research Journal
of Applied Sciences 8: pp.383-387.

[6]. Tilahun SL (2013) Prey-Predator Algorithm (PPA):
A new metaheuristic optimization algorithm
Penang, Malaysia: Universiti Sains Malaysia.

[7]. Tilahun SL, Ong HC (2015) Prey-predator
algorithm: a new metaheuristic algorithm for
optimization problems. International Journal of
Information Technology & Decision Making 14:
pp.1331-1352.

[8]. Hamadneh N, Khan WA, Sathasivam S, Ong HC
(2013) Design optimization of pin fin geometry
using particle swarm optimization algorithm. PloS
one 8: e66080.

[9]. Tilahun SL, Ngnotchouye JMT, Hamadneh NN
(2017) Continuous versions of firefly algorithm: a
review. Artificial Intelligence Review: pp.1-48.

[10]. Kowalski R, Logic UoEDoC (1973) Predicate logic
as programming language: Edinburgh University.

[11]. Bradley AR, Manna Z (2007) The calculus of
computation: decision procedures with applications
to verification: Springer.

[12]. Hamadneh N (2013) Logic Programming in Radial
Basis Function Neural Networks: Universiti Sains
Malaysia.

[13]. Zhang L, Madigan CF, Moskewicz MH, Malik
S. Efficient conflict driven learning in a boolean
satisfiability solver; 2001. IEEE Press. pp. 279-285.

[14]. Davis M, Logemann G, Loveland D (1962)
A machine program for theorem-proving.
Communications of the ACM 5: pp. 394-397.

[15]. Hamadneh N, Sathasivam S, Tilahun SL, Choon

OH. Satisfiability of logic programming based on
radial basis function neural networks; 2014. pp.
547-550.

[16]. Moody J, Darken J (1989) Fast learning in
networks of locally tuned processing units. Neural
Computation 1: pp. 281 - 294.

[17]. Hamadneh N, Sathasivam S, Choon OH (2012)
Higher order logic programming in radial basis
function neural network. Appl Math Sci 6: pp. 115-
127.

[18]. Sathasivam S, Hamadneh N, Choon OH (2011)
Comparing Neural Networks: Hopfield Network
and RBF Network. Applied Mathematical Sciences
5: pp. 3439 - 3452.

[19]. Taghi M, Vakil-Baghmisheh, Pavesic N
(2004) Training RBFnetworks with selective
backpropagation. Neurocomputing 62: pp. 39 – 36.

[20]. Noman S, Shamsuddin SM, Hassanien AE (2009)
Hybrid Learning Enhancement of RBF Network
with Particle Swarm Optimization: Springer-Verlag
Berlin Heidelberg. pp. 381-397

[21]. Xiaobin L (2009) RBF Neural Network Optimized
by Particle Swarm Optimization for Forecasting
Urban Traffic Flow. Third International Symposium
on Intelligent Information Technology Application:
IEEE. pp. 124-127.

[22]. Lowe D (1989) Adaptive radial basis function
nonlinearities, and the problem of generalization.
First IEE International Conference on artificial
neural networks. London. pp. 171 -175.

[23]. Schwenker F, Kestler HA, Palm G (2001) Three
learning phases for radial-basis-function networks.
Neural Networks 14: pp. 439-458.

[24]. Khan WA, Hamadneh NN, Tilahun SL,
Ngnotchouye JMT (2016) A Review and
Comparative Study of Firefly Algorithm and its
Modified Versions. Optimization Algorithms-
Methods and Applications. Rijeka: InTech. pp.
Ch.13.

[25]. Abouel-Kasem A, Hassab-Allah I, Nemat-Alla
M (2014) Analysis and Design of Viscoelastic
Adhesively Bonded Tubular Joint. Journal of
Engineering and Applied Sciences 1: pp. 13-23.

[26]. Yu Y, Malik S. Validating the result of a Quantified
Boolean Formula (QBF) solver: theory and
practice; 2005. ACM. pp. 1047-1051.

[27]. Samulowitz H (2008) Solving Quantified Boolean
Formulas: University of Toronto.

[28]. Nilsson NJ (1986) Probabilistic logic. Artificial
intelligence 28: pp. 71-87.

[29]. Hamadneh N, Sathasivam S, Tilahun SL, Choon
OH (2012) Learning Logic Programming in Radial
Basis Function Network via Genetic Algorithm.
Journal of Applied Sciences 12: pp. 840-847.

Nawaf Hamadneh and Saratha Sathasivam: Solving Satisfiability Logic Programming Using Radial Basis Function Neural Networks

