

Course Specifications

Institution:College of Education inAcademic Department :Physics DepartmentProgramme :Bachelor of Education in FCourse :Computational Physics2Course Coordinator :Dr. Fatema Alzahraa M.Programme Coordinator :Dr. Fatema Alzahraa M.Course Specification Approved Date :1/1/1

College of Education in Zulfi Physics Department Bachelor of Education in Physics(B. Ed in Physics) Computational Physics2 Dr. Fatema Alzahraa M. Dr. Fatema Alzahraa M. oved Date : 1/1/1438 H

This form compatible with NGAAA 2013 Edition

A. Course Identification and General Information

1 - Course title computational	physics2	Course Code:	PHYS421
· 2 Credit hours : (3CH))	Couc.	
3 - Program(s) in which the cou	irce ic	B Ed in	Physics
offered:	1150 15		111,5105
4 – Course Language : Arabic I	anguage.		
5 - Name of faculty member st	udying th	e course:	Dr. Fatema Alzahraa M. Nabieh
6 - Level/year at which this cou	arse is of	fered 8 th level.	
:			
7 - Pre-requisites for this cours	e (if any)	:	
• PHYS411			
8 - Co-requisites for this course (if any) : -			
9 - Location if not on main can	npus :		
	(-)		
10 - Mode of Instruction (mark	all that a	apply)	
A - Traditional classroom	V	What percentage?	80 %
B - Blended (traditional and online)	- V	What percentage?	%
D - e-learning	V	What percentage?	20 %
E - Correspondence	- V	What percentage?	%
F - Other	- V	What percentage?	%
Comments :			

B Objectives

What is th	e main purpose for this course?
1.	Understand the basic concepts of simulations and modeling and using Mathematica
	7 for student program.
2.	Acquire the necessary skills (e.g. computational and numerical skills) to solve
	systems problems and gain deeper understanding of the concepts of physics.
3.	Using Mathematica 7 for student program in solving problems in physics
	applications in different branches.
4.	Using Mathematica 7 for student online.
5.	Using simulations in practicum.

Briefly describe any plans for developing and improving the course that are being implemented : discussion with staff members, using E-Learning.

C. Course Description

1. Topics to be Covered

List of Topics	No. of	Contact	
	Weeks	Hours	
Quickly revision on computational physics 1 and its joining with	1	2	
computational physics 2.			
Installation of Mathematica7 program.	1	2	
Introduction to Mathematica7 and its interface.	1	2	
Using Mathematica7 program in mathematical calculations.	2	4	
Instruction of mathematical functions by Mathematica7 and plots.	2	4	
Midterm exam and its discussion	1	2	
Application in physics.	2	4	
Introduction to simulation and modeling systems.	1	2	
Simulation system experiments by Phet website.	3	6	
Revision and Responding to inquiries.	1	2	
Computer Laboratory			
Installation of Mathematica program.	1	2	
Make small programs using Mathematica.	4	8	
Using Mathematica in physics and mathematical applications.	4	8	
introduction to simulation and simulation application	4	8	
revision	1	2	

	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	30	-	-	28	-	58
Credit	30	-	-	14	-	44

2. Course components (total contact hours and credits per semester):

3. Additional private study/learning hours expected for students per week.

A round 3 : 5 training hours in the home to solving problems and on the training on the program.

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods	
1.0	Knowledge	e		
1.1	Recognize the basics of Mathematica program		Homework.Group	
1.2	Recognize the basics of modelling and simulation.	Lectures – tutorials – discussion- brain	 Mid-term exam Practical 	
1.3	Rename the most using of computer program in physics.	stormy.	Exam • Final Exam	
2.0	Cognitive Skills			
2.1 2.2	Setup of Mathematica program in PC. Using mathematical operations in Mathematica program.	ttica lectures – training on age, discussion- 		
2.3	Compared between programming language, between matlab and Mathematica program			

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods		
2.4 2.5	Develop lines of argument and appropriate judgments in accordance with handling computational physics Using simulations in physics.	brain stormy.	 Practical Exam Final Exam 		
3.0	Interpersonal Skills & Responsibility				
3.1	Engage in teamwork and manage time effectively.	 Encourage students to help each other Group presentation Group assignment. 	• Showing students activities in		
3.2	Respect community ethics traditions and moral values		class. • Work in		
3.3	Identify his/her rights and responsibilities as a member of a research / teaching team and as a member of the scientific community at large.		a team.		
4.0	Communication, Information Technology, N	umerical			
4.1	Use information, communication technology and numerical technology effectively.	Encourage	• Showing		
4.2	Engage work in a teamwork and effective communications.	program softwear	activities in class.		
	using computer professionally in programming language.		practical exam.		
5.0	Psychomotor				
	Not applicable				

5. Schedule of Assessment Tasks for Students During the Semester:

No.	Assessment task	Week Due	Proportion of Total Assessment
1	Attendance	within the	
2	Homework, Quizzes, Discussions, cooperation, Teamwork.	semester	15 %
3	Mid-term Exam	8	20 %
4	Final Theoretical and Practical Exam	16	60 %

D. Student Academic Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

Two office hour per week

E. Learning Resources

1. List Required Textbooks :

- Lecture notes prepared by academic staff member .
- Mathematica documentation center./ getting started

4. List Recommended Textbooks and Reference Material :

4. List Electronic Materials : -

5. Other learning material

Web sites and electronic materials are available with the lecturer

- https://www.wolfram.com/mathematica/
- <u>https://www.wolfram.com/mathematica/trial/</u>
- <u>https://phet.colorado.edu/ar_SA/</u>

F. Facilities Required

1. Accommodation

- Lecture room, a smart board to write on and computer
- 2. Computing resources
 - Computer Lab. and internet lab if available

3. Other resources

• Library of college or department, internet connection

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching: Student evaluation manually organized by the quality center of University

2 Other Strategies for Evaluation of Teaching by the Program/Department Instructor : --

- **3** Processes for Improvement of Teaching :
- 1. Course report.
- 2. Program report.

4. Processes for Verifying Standards of Student Achievement

Internal revision by staff members.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement :

1- Course Report
2- Exam report
3- Improvement plan
4- comparison between Program ILO's with course ILO's
5- Discussion with staff members.

Course's Coordinator

Name :	Dr.Fatema Alzahraa
Signature :	
Date :	3/ 12 / 1437 H

Department Head

Name : Dr.Fatema Alzahraa Signature Date : 3/ 12 / 1437 H

Course Specification Approved Department Official Meeting No (2) Date 1/1/1438 *H*

