

Logic Design

Dr. Yosry A. Azzam

2

Gate Level Minimization

 Chapter 3

3

 Agenda

 Simplification of
Boolean Functions
(The K-Map Method)

 Don’t Care Condition

 Synthesis with NAND

 & NOR Gate

 Brief on Gate
Implementation

 Main Reading

• Mano: Ch 3

 Objectives

 Understand the procedure of
simplifying Boolean
functions

 Understand and able to
perform the K-Map method

 Understand the Don’t Care
Condition and their place in
K-Map Method

 Understand and able to
implement design in NAND
and NOR Gate

 Understand the basic of Gate
Implementation

4

The Map Method

 Provides a simple straightforward procedure

for minimizing Boolean functions

 Proposed by Veitch (Veitch Diagram),

modified by Karnaugh (Karnaugh Map)

 Why bother?

• Simplifying the function = minimizing the

amount of gates

• Industrial requirements for efficiency in

mass production

5

2-Variable Map
 The Map represents a visual diagram of all possible

ways a function may be expressed in a standard form

6

 2-Variable Map
Representing Function in the map

• F= x.y  F= x+y = x’y + xy’ + xy

7

3-Variable Map

 The Map represents a visual diagram of all possible

ways a function may be expressed in a standard form

8

3-Variable Map : Example F(x,y,z)

9

3-Variable Map rules of combination

 One square represents one minterm, giving
a term of 3 literals.

 Two adjacent squares represent a term of 2
literals

 Four adjacent squares represent a term of 1
literal.

 Eight adjacent squares encompass the entire
map and produce a function that always
equal to 1.

10

3-Variable Map :
 Other Examples F(x,y,z)

11

3-Variable Map :
 Other Examples F(x,y,z)

12

Simplifying using the Map

 F = A’C + A’B + AB’C + BC

 Plot the expression

 Find minimum

adjacent squares

• Prime Implicant

• Essential Prime Implicant

 Draw them

 Write the expression

F = C + A’B

A
BC

01 00

0

1 A

B

10 11

C

1

1

1

1

1

13

4-Variable Map

14

4-Variable Map rules of combination

 One square represents one minterm , giving
a term of 4 literals.

 Two adjacent squares represent a term of 3
literals.

 Four adjacent squares represent a term of 2
literals.

 Eight adjacent squares represent a term of 1
literal.

 Sixteen adjacent squares represent the
function equal to 1.

15

4-Variable Maps (Example)

 F(w,x,y,z) =

∑(0,1,2,4,5,6,8,9,

 12,13,14)

 0000, 0001, 0010,

0100, 0101, 0110,

1000, 1001, 1100,

1101, 1110

 f(w,x,y,z)=y’+w’z’+xz’

16

4-Variable Maps (Example)

 Simplify the

Boolean Function:
F= A’B’C’ + B’CD’ +

A’BCD’ + AB’C’

Solution:

The simplified function
is:

F=B’D’ + B’C’ + A’ CD’

17

5-Variable Map

18

5-variable Map

F(w,x,y,z) = ∑(0,2,4,6,9,13, 21, 23, 25, 29,31)

19

Product of Sum Simplification

 F(w,x,y,z) =

∑(0,1,2,4,5,6,8,9,

 12,13,14)

 0000, 0001, 0010,

0100, 0101, 0110,

1000, 1001, 1100,

1101, 1110

1

wx
yz

01 00

00

01

w

y

10 11

z

1 0 1

11

10

x

1 1 0 1

1 1 0 1

1 1 0 0

20

Product of Sum Simplification

 F(w,x,y,z) =

∑(0,1,2,4,5,6,8,9,

 12,13,14)

 0000, 0001, 0010,

0100, 0101, 0110,

1000, 1001, 1100,

1101, 1110

 f(w,x,y,z)=y’+w’z’+xz’

21

Product of Sum Simplification

F' = yz+ wx’y

F=(F’)’
F=(yz + wx’y)’
F=(yz)’(wx’y)’

 F=(y’+z’)(w’+x+y’)

1

wx
yz

01 00

00

01

w

y

10 11

z

1 0 1

11

10

x

1 1 0 1

1 1 0 1

1 1 0 0

22

Are they the Same?

 F = y' + w'z' + xz'

 F'= yz + wx'y

 (F’)’

 (yz + wx’y)’

 (yz)’(wx’y)’

 (y’+z’)(w’+x+y’)

 y'w' + y'x + y'y' + z'w' + z'x + z'y'

 y'(w' + x + z' + y') + z'w' + z'x

 y'+ z'w' + z'x

Product of Sum Simplification

Normal Simplification (Sum of Product)

23

Product of sums simplification

24

 Gates Implementation : example

25

Don’t Care Conditions :

 Sometimes a certain combination of inputs will

never be evaluated by your digital system, thus a

“Don’t care” is placed for those valuation

 E.g. consider a BCD (Binary Coded Decimal) number,

there are 4 binary variables b3,b2,b1,b0 that represents

decimal 0 to 9. design a system that detect if the

BCD input given is divisible with 3

• 4 bits has 16 combinations, but only 10 are used to

represent decimal 0 to 9, the remaining combinations are

not used.

• System will produce 1 if the BCD is divisible by 3.

26

Don’t Care Example
Decimal Binary

Represe

ntation

b

3

b

2

b

1

b

0

f

0 0 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 0

3 0 0 1 1 1

4 0 1 0 0 0

5 0 1 0 1 0

6 0 1 1 0 1

7 0 1 1 1 0

8 1 0 0 0 0

9 1 0 0 1 1

Unused 1 0 1 0 d

Unused 1 0 1 1 d

Unused 1 1 0 0 d

Unused 1 1 0 1 d

Unused 1 1 1 0 d

unused 1 1 1 1 d

0

b
1
b

0 01 00

00

01

10 11

0 1 0

11

10

0 0 0 1

d d d d

0 1 d d

b
3
b

2

27

Simplifying With Don’t Cares

b2b1b0’+b2’b1b0+b3b0

You can either use or
not use the don’t care
cell
(it can be treated like a
“1” if it can produce
more efficient result)

0

b 1 b 0
01 00

00

01

10 11

0 1 0

11

10

0 0 0 1

d d d d

0 1 d d

b
3
b

2

28

So What Does Don’t Care Means?

 We simply don’t care what the function

values are for the unused input valuation

Denote by “d” or “x”

 Keep in mind to use as minimum amount of

terms as possible

29

Example with don’t Care condition

F(w,x,y,z)= yz+w'x'= ∑(0,1,2,3,7,11,15)

F(w,x,y,z)= yz+w'z= ∑(1,3,5,7,11,15)

F'=z'+wy‘

F(w,x,y,z) = z(w'+y)=
∑(0,2,4,6,8,9,10,12,13,14)

Simplify :

F(W,X,Y,Z)=
∑(1,3,7,11,15)

With the Don’t
care conditions
of:

d(w,x,y,z)=
∑(0,2,5)

30

Implementation of Logic Gates

 Inverter

 NOR

 NAND

 In the market, logic gates are more commonly
implemented using NAND and NOR gates rather
than AND & OR

 Because It is easier to manufactured

31

NOT, AND & OR Gates
 implementation using NAND

x

x

y

x

y

X'

xy

(x’y’)’ = x+y

NOT

AND

OR

32

NAND Gate’s Symbols

 NAND Gate as Universal Gate

 Any gate can be represented using NAND

 Implemented as if AND-Invert or Invert-OR

 (xyz)' = x' + y' + z'

=

33

Two-Level Implementation

 F = AB + CD

A

B

C

D

F

F=[(AB)'' +(CD)''] =AB+CD

A

B

C

D

F

A

B

C

D

F
F=[(AB)‘. (CD)']' = [(A+B) .
(C+D)]‘
 = AB+CD

34

Two-Level Implementation

 F = AB + CD

A

B

C

D

F

Read the
summary of
procedure in
Page 85
(top)

A

B

C

D

F

A

B

C

D

F

Level-1

Level-2

35

Example

Implement the following Boolean function with NAND gates:

F(x,y,z) = (1,2,3,4,5,7)

36

Implementation with NAND gates procedure:

1- Simplify the function and express it in sum of
products.

2- Draw a NAND gate for each product term of
the expression that has at least two literals.

3- Draw a single gate using the AND-invert or the
invert-OR in the second level.

4- A term with a single literal requires an inverter
in the first level. However, if the single literal is
complemented, it can be connected directly to
an input of the second level NAND gate

37

Multilevel Logic Circuit #1
 To obtain a multilevel NAND diagram from

a Boolean Expression:

 Draw the Logic Diagram

 F = A (CD + B)+BC'

‘

38

Multilevel Logic Circuit # 2
 Convert all AND gates to NAND gates with AND invert

graphic symbol

 Convert all OR gates to NAND gates with Invert OR graphic symbol.

 Check all the bubbles in the diagram. For every bubble that is not

compensated by an other small circle along the same line, insert an

inverter (one input NAND gate) or complement the input literal.

‘

39

Multilevel Logic Circuit #3
•Consider the multilevel Boolean function:

 F = (AB' + A' B)(C+D')

40

NOR Implementation

 Universal Gate: The NOR gate is said to be

a universal gate because any digital system

can be implemented with it.

41

NOR Gate Symbol

 Implemented as if OR-Invert or Invert-AND

 (x' y' z') = (x + y + z)'

42

Example
 Implement the following Boolean function with NOR gates:

F = (A+B)(C+D)E

43

Multilevel Logic Circuit with NOR
Implementation

•Give the NOR multilevel implementation for the Boolean

function:

 F = (AB' + A' B)(C+D')

44

Exclusive OR Function

x  y = xy‘ + x'y

XNOR: Inverted XOR
(x  y)’ = xy + x’y’

x  0 = x
x  1 = x'
x  x = 0
x  x' = 1

x  y' = x'  y=(x  y)'

X Y X  Y

0 0 0

0 1 1

1 0 1

1 1 0

45

Exclusive OR Implementation

The first NAND gate perform the

operation (xy)' = (x'+y')

Then

x  y= (x'+y')x+(x'+y')y

= xy‘ + x'y= x  y

46

Odd Function

A  B  C= (AB'+A'B)C' + (AB +A'B')C

=AB'C'+A'BC'+ABC+A'B'C

= ∑(1,2,4,7)

This means that in the 3 or more variable case
the requirement of XOR function to be equal to 1
is that an odd number of variables be equal to 1

47

Three Variable XOR Odd and Even Function

48

Four Variable XOR Odd and Even Functions

A  B  C  D= (AB'+A'B)  (CD' + C'D)

=(AB' +A'B)(CD+C'D') + (AB +A'B')(CD' +C' D)

= ∑(1,2,4,7,8,11,13,14)

1

AB
CD

01 00

00

01

A

C

10 11

D

1

11

10

B

1 1

1 1

1 1

AB
CD

01 00

00

01

A

C

10 11

D

1 1

11

10

B

1 1

1 1

1 1

Odd Function

F = A  B  C  D

Even Function

F =(A  B  C  D)'

49

Parity Generation and Checking

Three-Bit Message Parity Bit

x y Z P

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

 Four-Bits Received Parity Error

Check

x y Z P C

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Even Parity checker Truth Table

Even Parity Generator
Truth Table

50

Logic Diagram of Parity Generator and

Checker

