
 

 

 

 

Logic Design 

  
Dr. Yosry A. Azzam 

 



2 

Gate Level Minimization 

 

 

 Chapter 3 
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 Agenda 

 Simplification of 
Boolean Functions  
(The K-Map Method) 

 Don’t Care Condition 

 Synthesis with NAND 

 & NOR Gate 

 Brief on Gate 
Implementation 

 

 

 Main Reading 

• Mano: Ch 3 

 Objectives 

 Understand the procedure of 
simplifying Boolean 
functions 

 Understand and able to 
perform the K-Map method  

 Understand the Don’t Care 
Condition and their place in 
K-Map Method 

 Understand and able to 
implement design in NAND 
and NOR Gate 

 Understand the basic of Gate 
Implementation 
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The Map Method 

 Provides a simple straightforward procedure 

for minimizing Boolean functions 

 Proposed by Veitch (Veitch Diagram), 

modified by Karnaugh (Karnaugh Map) 

 Why bother? 

• Simplifying the function = minimizing the 

amount of gates 

• Industrial requirements for efficiency in 

mass production 
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2-Variable Map 
 The Map represents a visual diagram of all possible 

ways a function may be expressed in a standard form 
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 2-Variable Map 
Representing Function in the map 

• F= x.y  F= x+y = x’y + xy’ + xy 
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3-Variable Map 

 The Map represents a visual diagram of all possible 

ways a function may be expressed in a standard form 
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3-Variable Map :  Example F(x,y,z) 
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3-Variable Map rules of combination 

 One square represents one minterm, giving 
a term of 3 literals. 

 Two adjacent squares represent a term of 2 
literals 

 Four adjacent squares represent a term of 1 
literal. 

 Eight adjacent squares encompass the entire 
map and produce a function that always 
equal to 1. 
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3-Variable Map :  
    Other Examples F(x,y,z) 
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3-Variable Map :  
    Other Examples F(x,y,z) 
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Simplifying using the Map  

 F = A’C + A’B + AB’C + BC 

 Plot the expression 

 Find minimum 

adjacent squares 

• Prime Implicant 

• Essential Prime Implicant 

 Draw them 

 Write the  expression 

F =  C +  A’B 

A 
BC 

01 00 

0 

1 A 

B 

10 11 

C 

1 

1 

1 

1 

1 
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4-Variable Map 
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4-Variable Map rules of combination 

 One square represents one minterm , giving 
a term of 4 literals. 

 Two adjacent squares represent a term of 3 
literals. 

 Four adjacent squares represent a term of 2 
literals. 

 Eight adjacent squares represent a term of 1 
literal. 

 Sixteen adjacent squares represent the 
function equal to 1. 
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4-Variable Maps (Example) 

 F(w,x,y,z) = 

∑(0,1,2,4,5,6,8,9, 

 12,13,14) 

 0000, 0001, 0010, 

0100, 0101, 0110, 

1000, 1001, 1100, 

1101, 1110 

 f(w,x,y,z)=y’+w’z’+xz’ 
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4-Variable Maps (Example) 

 Simplify the 

Boolean Function: 
F= A’B’C’ + B’CD’ + 

A’BCD’ + AB’C’ 

 

Solution: 

The simplified function 
is: 

F=B’D’ + B’C’ + A’ CD’  
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5-Variable Map 
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5-variable Map 

F(w,x,y,z) = ∑(0,2,4,6,9,13, 21, 23, 25, 29,31) 



19 

Product of Sum Simplification  

 F(w,x,y,z) = 

∑(0,1,2,4,5,6,8,9, 

 12,13,14) 

 0000, 0001, 0010, 

0100, 0101, 0110, 

1000, 1001, 1100, 

1101, 1110 

1 

wx 
yz 

01 00 

00 

01 

w 

y 

10 11 

z 

1 0 1 

11 

10 

x 

1 1 0 1 

1 1 0 1 

1 1 0 0 
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Product of Sum Simplification 

 F(w,x,y,z) = 

∑(0,1,2,4,5,6,8,9, 

 12,13,14) 

 0000, 0001, 0010, 

0100, 0101, 0110, 

1000, 1001, 1100, 

1101, 1110 

 f(w,x,y,z)=y’+w’z’+xz’ 
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Product of Sum Simplification  

F' =  yz+ wx’y 

F=(F’)’ 
F=(yz + wx’y)’ 
F=(yz)’(wx’y)’ 
 
 
 F=(y’+z’)(w’+x+y’) 

1 

wx 
yz 

01 00 

00 

01 

w 

y 

10 11 

z 

1 0 1 

11 

10 

x 

1 1 0 1 

1 1 0 1 

1 1 0 0 
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Are they the Same? 

 F = y' + w'z' + xz' 

 F'= yz + wx'y 

 (F’)’ 

 (yz + wx’y)’ 

 (yz)’(wx’y)’ 

 (y’+z’)(w’+x+y’) 

 y'w' + y'x + y'y' + z'w' + z'x + z'y' 

 y'(w' + x + z' + y') + z'w' + z'x  

 y'+ z'w' + z'x  

Product of  Sum Simplification 

Normal Simplification (Sum of  Product) 
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Product of sums simplification 
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 Gates Implementation : example 
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Don’t Care Conditions : 

 Sometimes a certain combination of inputs will 

never be evaluated by your digital system, thus a 

“Don’t care” is placed for those valuation 

 E.g. consider a BCD (Binary Coded Decimal) number, 

there are 4 binary variables b3,b2,b1,b0 that represents 

decimal 0 to 9. design a system that detect if the 

BCD input given is divisible with 3 

• 4 bits has 16 combinations, but only 10 are used to 

represent decimal 0 to 9, the remaining combinations are 

not used. 

• System will produce 1 if the BCD is divisible by 3. 
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Don’t Care Example 
Decimal Binary 

Represe

ntation 

b

3 

b

2 

b

1 

b

0 

f 

0 0 0 0 0 0 

1 0 0 0 1 0 

2 0 0 1 0 0 

3 0 0 1 1 1 

4 0 1 0 0 0 

5 0 1 0 1 0 

6 0 1 1 0 1 

7 0 1 1 1 0 

8 1 0 0 0 0 

9 1 0 0 1 1 

Unused 1 0 1 0 d 

Unused 1 0 1 1 d 

Unused 1 1 0 0 d 

Unused 1 1 0 1 d 

Unused 1 1 1 0 d 

unused 1 1 1 1 d 

0 

b 
1 
b 

0 01 00 

00 

01 

10 11 

0 1 0 

11 

10 

0 0 0 1 

d d d d 

0 1 d d 

b 
3 
b 

2 
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Simplifying With Don’t Cares 

b2b1b0’+b2’b1b0+b3b0 

You can either use or 
not use the don’t care 
cell  
(it can be treated like a 
“1” if it can produce 
more efficient result) 

0 

b 1 b 0 
01 00 

00 

01 

10 11 

0 1 0 

11 

10 

0 0 0 1 

d d d d 

0 1 d d 

b 
3 
b 

2 
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So What Does Don’t Care Means? 

 We simply don’t care what the function 

values are for the unused input valuation 

Denote by “d” or “x” 

 

 Keep in mind to use as minimum amount of 

terms as possible 
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Example with don’t Care condition 

F(w,x,y,z)= yz+w'x'= ∑(0,1,2,3,7,11,15) 

F(w,x,y,z)= yz+w'z= ∑(1,3,5,7,11,15) 

F'=z'+wy‘ 

F(w,x,y,z) = z(w'+y)= 
∑(0,2,4,6,8,9,10,12,13,14) 

Simplify : 

F(W,X,Y,Z)= 
∑(1,3,7,11,15) 

With the Don’t 
care conditions 
of: 

d(w,x,y,z)= 
∑(0,2,5) 
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Implementation of Logic Gates 

 Inverter  

 NOR  

 NAND  

 

 In the market, logic gates are more commonly 
implemented using NAND and NOR gates rather 
than AND & OR 

 Because It is easier to manufactured 
 



31 

NOT, AND & OR Gates 
   implementation using NAND 

x

x

y

x

y

X'

xy

(x’y’)’ = x+y

NOT 

AND 

OR 
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NAND Gate’s Symbols 

 NAND Gate as Universal Gate 

 Any gate can be represented using NAND 

 Implemented as if AND-Invert or Invert-OR 

 (xyz)' = x' + y' + z' 

= 
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Two-Level Implementation 

 F =  AB + CD 

A

B

C

D

F

F=[(AB)'' +(CD)''] =AB+CD 

A

B

C

D

F

A

B

C

D

F
F=[(AB)‘. (CD)']' = [(A+B) . 
(C+D)]‘ 
                        = AB+CD 
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Two-Level Implementation 

 F =  AB + CD 

A

B

C

D

F

Read the 
summary of 
procedure in 
Page 85 
(top) 

A

B

C

D

F

A

B

C

D

F

Level-1 

Level-2 
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Example 

Implement the following Boolean function with NAND gates: 

F(x,y,z) = (1,2,3,4,5,7) 
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Implementation with NAND gates procedure: 

1- Simplify the function and express it in sum of 
products. 

2- Draw a NAND gate for each product term of 
the expression that has at least two literals. 

3- Draw a single gate using the AND-invert or the 
invert-OR in the second level. 

4- A term with a single literal requires an inverter 
in the first level. However, if the single literal is 
complemented, it can be connected directly to 
an input of the second level NAND gate 
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Multilevel Logic Circuit #1 
 To obtain a multilevel NAND diagram from 

a Boolean Expression: 

   Draw the Logic Diagram 

   F = A (CD + B)+BC'  

‘ 
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Multilevel Logic Circuit # 2 
 Convert all AND gates to NAND gates with AND invert 

graphic symbol 

 Convert all OR gates to NAND gates with Invert  OR graphic symbol. 

 Check all the bubbles in the diagram. For every bubble that is not 

compensated by an other small circle along the same line, insert an 

inverter (one input NAND gate) or complement the input literal. 

‘ 
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Multilevel Logic Circuit #3 
•Consider the multilevel Boolean function: 

 F = (AB' + A' B)(C+D') 
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NOR Implementation 

 Universal Gate: The NOR gate is said to be 

a universal gate because any digital system 

can be implemented with it. 
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NOR Gate Symbol 

 Implemented as if OR-Invert or Invert-AND 

 (x' y' z') = (x + y + z)' 
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Example 
 Implement the following Boolean function with NOR gates: 

F = (A+B)(C+D)E 
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Multilevel Logic Circuit with NOR 
Implementation 

•Give the NOR multilevel implementation for the Boolean 

function: 

 F = (AB' + A' B)(C+D') 
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Exclusive OR Function 

x  y = xy‘ + x'y 
 

XNOR: Inverted XOR  
(x  y)’ = xy + x’y’ 

 
 
 
 
 
 
 
 
 

x  0 = x 
x  1 = x' 
x  x = 0 
x  x' = 1 

x  y' = x'  y=(x  y)' 

X Y X  Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 
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Exclusive OR Implementation 

The first NAND gate perform the 

operation (xy)' = (x'+y') 

Then 

x  y= (x'+y')x+(x'+y')y 

= xy‘ + x'y= x  y 
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Odd Function 

A  B  C= (AB'+A'B)C'  + (AB +A'B')C 

=AB'C'+A'BC'+ABC+A'B'C 

= ∑(1,2,4,7) 

This means that in the 3 or more variable case 
the requirement of XOR function to be equal to 1   
is that an odd number of variables be equal to 1 
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Three Variable XOR Odd and Even Function 
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Four Variable XOR Odd and Even Functions 

A  B  C  D= (AB'+A'B)  (CD'  + C'D) 

=(AB' +A'B)(CD+C'D') + (AB +A'B')(CD' +C' D) 

= ∑(1,2,4,7,8,11,13,14) 

1 

AB 
CD 

01 00 

00 

01 

A 

C 

10 11 

D 

1 

11 

10 

B 

1 1 

1 1 

1 1 

AB 
CD 

01 00 

00 

01 

A 

C 

10 11 

D 

1 1 

11 

10 

B 

1 1 

1 1 

1 1 

Odd Function 

F = A  B  C  D 

Even Function 

F =( A  B  C  D)' 
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Parity Generation and Checking 

Three-Bit Message Parity Bit 

x y Z P 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

 Four-Bits Received Parity Error 

Check 

x y Z P C 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 0 

Even Parity checker Truth Table 

Even Parity Generator 
Truth Table 
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Logic Diagram of Parity Generator and 

Checker 

 


