Majmaah University

Course Profile

Course Name:-	Calculus (2)
Course Code:-	MATH-126
Academic Year:-	$1434-1435 \mathrm{H}$
Semester:-	1

Course Overview

This course includes the following topics:

1) Integration Techniques: Review of Integration by Substitution and Integration by Parts, Integration of Rational Functions Using Partial Fractions, Trigonometric Techniques of Integration, Integrals involving logarithmic, exponential, and hyperbolic functions, Improper Integrals.
2) Infinite series: Sequences and limit of a sequence. Infinite series of constant terms, convergence tests, alternating series and absolute convergence. Power series, the ratio test, and radius of convergence; Taylor and MacLaurin series.
3) Vectors and Geometry of Space: Vectors in Space, Dot Product, Cross Product, Lines and Planes in Space, Cylindrical and Spherical Coordinates.
4) Parametric Equations and Polar Coordinates: Plane Curves and Parametric Equations, Calculus and Parametric Equations, Polar Coordinates, Calculus and Polar Coordinates.
5) Functions of several variables and Partial Differentiation: Functions of several variables, Partial derivatives, Total derivative, Chain rule.
6) Multiple Integrals: Double and Triple Integrals in Cartesian Coordinates; Areas and Volumes, Double Integrals in Polar Coordinates; Triple Integrals in Cylindrical and Spherical Coordinates.

Course Details	
Level:-	4
Credit:-	$3(3+0+1)$
Pre-Requisites:-	MATH 112
Co- Requisites:-	Nil

After successful completion of this course, student will be able to-

1. Manipulate the integration of complicated functions and evaluate double and triple integrals.
2. Use various tests to determine series convergence and successfully solve problems involving infinite series.
3. Use polar coordinates and their applications in the parametric equations.
4. Differentiate functions of two and three variables.

Course Assessment

Name of Assessment Task	Weight of Assessment	Week Due
1. Midterm Exam-1	$\mathbf{2 0 \%}$	$\mathbf{7}^{\text {th }}$
2. Midterm Exam-2	$\mathbf{2 0 \%}$	$\mathbf{1 2}^{\text {th }}$
3. Quizzes	$\mathbf{1 0 \%}$	$\mathbf{4}^{\text {th }}, \mathbf{9}^{\text {th }}, \mathbf{1 2}^{\text {th }}$
4. Assignments/Report/Seminar	$\mathbf{1 0 \%}$	$\mathbf{5}^{\text {th }}, \mathbf{8}^{\text {th }}, \mathbf{1 1}^{\text {th }}, \mathbf{1 4}^{\text {th }}$
5. Final Exam	$\mathbf{4 0 \%}$	$\mathbf{1 6}^{\text {th }}$

Assessment Task and Learning Outcomes Alignment

Assessment Task Name	Course Learning Outcomes					
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
	$\sqrt{ }$					
2. Midterm Exam-2		$\sqrt{ }$	$\sqrt{ }$			
3. Quizzes	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		
4. Assignments/Report/Seminar	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		
5. Final Exam	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		

Teaching Contact Details

Name of Course Coordinator:-	Dr. Sunil Kumar Sharma
Email of Course Coordinator:-	s.sharma@mu.edu.sa
Lab/Tutorial Instructor:-	N/A
Email of Lab/Tutorial Instructor:-	N/A

Office Hours:-	Monday 11 am-12 am, Thursday 11.00 am -12. Pm
Office Number:-	$024-1-18-1$
Office Phone Number:-	$00966-16404-5388$

Details of Required Text Book

Book Name	Authors Name	Publisher	Year	Edition
1. Calculus, Early Transcendental Functions	 Roland Minton	McGraw-Hill Science Engineering	2007	

Details of Required Reference Books

Book Name	Authors Name	Publisher	Year	Edition
1. Calculus Early Transcendentals	C. Henry Edwards, David E. Penney	Prentice Hall	2008	
2. Calculus	 Edwards	Houghton Mifflin Publisher	2005	8th $^{\text {th }}$
3. Calculus	O. Swokowski, et al	PWS Pub. Co.	1994	6th

IT Resources

The following IT Resources will require to access-

1. https://www.desmos.com/
2. http://tutorial.math.lamar.edu/

Course Schedule

Course Topics	Book's Chapter	Event Name	Week Due
Review of Integration by Substitution and Integration by Parts, Integration of Rational Functions Using Partial Fractions,	Chapter..7 Integration Technique	Week-1	
Trigonometric Techniques of Integration, Integrals involving logarithmic, exponential, and hyperbolic functions,	Chapter..7 Integration Technique	Week-2	
Improper Integrals.	Chapter..7 Integration Technique		Week-3

Sequences and limit of a sequence. Infinite series of constant terms, convergence tests	Chapter..9 Infinite Series		Week-4
convergence tests, alternating series and absolute convergence.	Chapter..9 Infinite Series	Quize-1	Week-5
Power series, the ratio test, and radius of convergence;	Chapter..9 Infinite Series	Assignment- 1	Week-6
Taylor and MacLaurin series.	Chapter..9 Infinite Series	Midterm 1	Week-7
Vectors in Space, Dot Product, Cross Product, Lines and Planes in Space	Chapter 11.. Vectors and the Geometry Space	Assignment- 2	Week-8
Cylindrical and Spherical Coordinates.	Chapter and.. Vectors and the Geometry Space	Quize-2	Week-9
Plane Curves and Parametric Equations, Calculus and Parametric Equations	Chapter Parametric 10.. Equations and Polar Coordinates	Wssignment-	Week-11
Polar ordinates, Calculus and Polar Coordinates.	Chapter Parametric 10.. Equations and Polar Coordinates	A	Week-10
Cunctions of several variables, Partial derivatives,	Chapter 13..	Midterm -2	Week-12
Total derivative, Chain rule.	Assignment- 4	Week-13	
Double and Triple Integrals in Cartesian Coordinates; Areas and Volumes, Double Integrals in Polar Coordinates;	Chapter .. 14 Multiple Integrals	Quize-3	Week-14
Triple Integrals in Cylindrical and Spherical Coordinates.	Chapter .. 14 Multiple Integrals	Final Examination	Exam Week
	Week-15		

Referencing Style

The American Psychological Association (APA) referencing style must be use for all submissions of this course.

Course Assessment Task

Assessment Name:-	Midterm Exam-1
Description of Task Assessment:-	The closed book written examinations of 2 hour will be conducted. The questions will be asked in this paper are of remembering,
understanding, application and analysis level	
question which will in turn increase the	

	mathematical logical skill, linguistic and spatial skill.
Task Assessment Due Week/Date:-	$\mathbf{7}^{\text {th }}$
Return Week/Date to Students:-	$\mathbf{8}^{\text {th }}$
Weight of Task Assessment:-	$\mathbf{2 0 \%}$
List of Learning Outcomes Assessed:-	1.Manipulate the integration of complicated functions and evaluate double and triple integrals.2. Use various tests to determine series convergence and successfully solve problems involving infinite series.

Assessment Name:-	Midterm Exam-2
Description of Task Assessment:-	This assignment is aligned to learning outcomes 1 , 2 and 3. In that regard, the assignment contains questions that assess: 1) Students are able to distinguish among the main types of conic sections based on the discriminant criterion 2) Students' are able to devise parametric representations for conic sections and other relations. 3) Students' are able compute the length of a curve segment from its parametric representation. 4) Students' are able to apply basic antidifferentiation techniques to selected problems arising in various fields of modelling such as physical modeling . 5) Students' are able to determine the Taylor series of the nth order and determine an upper bound on its remainder. 6) Students' are able to find the sum of the series with the help of Laurents's expansion.
Task Assessment Due Week/Date:-	11 ${ }^{\text {th }}$
Return Week/Date to Students:-	$12^{\text {th }}$
Weight of Task Assessment:-	20\%
List of Learning Outcomes Assessed:-	1. Manipulate the integration of complicated functions and evaluate double and triple integrals. 2. Use various tests to determine series convergence and successfully solve problems involving infinite series. 3. Use polar coordinates and their applications in the parametric equations.

\(\left.$$
\begin{array}{|l|l|}\hline \text { Weight of Task Assessment:- } & \mathbf{4 0 \%} \\
\hline \text { Duration:- } & \text { 3-hours } \\
\hline \text { Warning:- } & \text { Nil } \begin{array}{l}\text { 1. Manipulate the integration of complicated } \\
\text { List of Learning Outcomes Assessed:- } \\
\text { functions and evaluate double and triple } \\
\text { integrals. }\end{array}
$$

\hline 2. Use various tests to determine series

convergence and successfully solve

problems involving infinite series.\end{array}\right\}\)| 3. Use polar coordinates and their applications |
| :--- |
| in the parametric equations. |
| 4. Differentiate functions of two and three |
| variables. |

