Kingdom of Saudi Arabia
 Ministry of Higher Education College of Computer \& Information Sciences
 Majmaah University

Course Profile

Course Name:-	Calculus (1)
Course Code:-	MATH-112
Academic Year:-	$1435-1436$ H
Semester:-	Level 3

Course Overview

This course is introducing the following topics

1) Limits and Continuity: The Concept of Limit, Computation of Limits, Continuity and its Consequences, The Method of Bisections, Limits Involving Infinity, Asymptotes.
2) The Derivative: Tangent Lines and Velocity, The Derivative, Computation of Derivatives: The Power Rule, Higher Order Derivatives, The Product and Quotient Rules, Chain rule. Derivatives of trigonometric functions. Exponential, logarithmic, and hyperbolic functions and their derivatives. Implicit differentiation and inverse function's derivative. Derivatives of high order. Hospital's Rule and undetermined forms.
3) Applications of the Derivative: Absolute and local extreme, critical points, tests for local extreme, concavity and inflection points, and applications. Rolle's Theorem and the Mean Value Theorem. Curve sketching using calculus. Optimization problems, Linear approximation. Newton and fixed point iteration methods.
4) Integrals: Anti-derivatives, Indefinite Integral; Integration by Substitution; Integration by Parts; .Riemann sums; The Definite Integral; Area under curves; The Fundamental Theorems of Calculus; The Mean Value Theorem of Integration.

Course Details	
Level:-	3
Credit:-	$3(3+0+1)$
Pre-Requisites:-	None
Co-Requisites:-	None

Learning Outcomes of Course

After successful completion of this course, student will be able to-

1. Find a limit (numerically, graphically and analytically).
2. Calculate derivatives of complicated functions.
3. Apply differentiation to problems such as related rates, graphing and optimization.
4. Find and interpret the integrals of elementary functions.
5. Pursue later courses in calculus.

Course Assessment

Name of Assessment Task	Weight of Assessment	Week Due
1. Midterm Exam-1	20%	$\mathbf{7}^{\text {th }}$
2. Midterm Exam-2	20%	$\mathbf{1 2}^{\text {th }}$
3. Quizzes	$\mathbf{1 0 \%}$	$\mathbf{4}^{\text {th }}, \mathbf{9}^{\text {th }}, \mathbf{1 2}^{\text {th }}$
4. Assignments	$\mathbf{1 0 \%}$	$\mathbf{5}^{\text {th }}, \mathbf{8}^{\text {th }}, \mathbf{1 1}^{\text {th }}, \mathbf{1 4}^{\text {th }}$
5. Final Exam	$\mathbf{4 0 \%}$	$\mathbf{1 6}^{\text {th }}$

Assessment Task and Learning Outcomes Alignment

Assessment Task Name	Course Learning Outcomes				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
	$\sqrt{ }$	$\sqrt{ }$			
2. Midterm Exam-2			$\sqrt{ }$	$\sqrt{ }$	
3. Quizzes	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
4. Assignments/Report/Seminar	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
5. Final Exam	$\sqrt{ }$				

Teaching Contact Details

Name of Course Coordinator:-	Dr. Sunil Kumar Sharma
Email of Course Coordinator:-	s.sharma@mu.edu.sa
Lab/Tutorial Instructor:-	N/A
Email of Lab/Tutorial Instructor:-	N/A
Office Hours:-	Monday 10am-11 am, Thursday 11.00 am - $12 . p m$
Office Number:-	024-1-18-1
Office Phone Number:-	$\mathbf{0 1 6 4 0 4 5 3 8 8}$

Details of Required Text Book

Book Name	Authors Name	Publisher	Year	Edition
1. Calculus, Early Transcendental Functions,.	Robert Smith, Roland Minton,	McGraw-Hill Science Engineering,	$\mathbf{4}^{\text {th }}$	2007

Details of Required Reference Books

Book Name	Authors Name	Publisher	Year	Edition
1. Calculus, Early Transcendental	C. Henry Edwards, David E. Penney	Prentice Hall	$\mathbf{2 0 0 8}$	
2. Calculus	 Edwards	Houghton Mifflin Publisher	$\mathbf{2 0 0 5}$	$\mathbf{8}^{\text {th }}$
3. Calculus	0. Swokowski	PWS Pub. Co	$\mathbf{1 9 9 4}$	6th $^{\text {th }}$

IT Resources

The following IT Resources will require to access-

1. https://www.desmos.com/
2. http://tutorial.math.lamar.edu/

Course Schedule

Course Topics	Book's Chapter	Event Name	Week Due
Functions, Concept of Limit, computation of limit	Chapter 1..Limit and Continuity	Week-1	
Definition of continuity, computation of continuity	Chapter 1..Limit and Continuity	Week-2	
Intermediate Value theorem, Compuation of roots by bisection method	Chapter 1..Limit and Continuity	Week-3	
Limit at Infinity Horizontal Asymptotes, Slant Asymptotes	Chapter 1..Limit and Continuity	Week-4	
Tangent Lines and Velocity, The Derivative, Computation of Derivatives: The Power Rule	Chapter 2.. Differentiation	Quize-1	Week-5
Higher Order Derivatives, The Product and Quotient Rules, Chain rule.	Chapter 2.. Differentiation	Assignment- 1	Week-6

Derivatives of trigonometric functions. Exponential, logarithmic, and hyperbolic functions and their derivatives.	Chapter 2.. Differentiation	Midterm 1	Week-7
Derivatives of higher order.	Chapter 2.. Differentiation	Assignment- 2	Week-8
Hospital's Rule and undetermined forms. Derivatives of high order	Chapter 7.. Integration Technique	Quize-2	Week-9
Absolute and local extreme, critical points, tests for local extreme, concavity and inflection points, and solution to the problems	Chapter 3.. Application of Differentiation		Week-10
Rolle's Theorem and the Mean Value Theorem. Curve sketching using calculus.	Chapter 2.. Differentiation	Assignment- 3	Week-11
Optimization problems, Linear approximation. Newton and fixed point iteration methods.	Chapter $3 .$. Application of Differentiation	Midterm -2	Week-12
Anti-derivatives, Indefinite Integral; Integration by Substitution; Integration by Parts;	Chapter $4 .$. Integration	Assignment- 4	Week-13
Riemann sums; The Definite Integral; Area under curves	Chapter Integration	Quize-3	Week-14
The Fundamental Theorems of Calculus; The Mean Value Theorem of Integration.	Chapter Integration		Week-15
Final Examination		Final Examination	Exam Week

Course Assessment Task

The American Psychological Association (APA) referencing style must be use for all submissions of this course.

Assessment Name:-	Midterm Exam-1		
Description of Task Assessment:-	The closed book written examinations of 2 hour will be conducted. The questions will be asked in this paper are of remembering, understanding, application and analysis level question which will in turn increase the mathematical logical skill, linguistic and spatial skill.		
Task Assessment Due Week/Date:-	7h $^{\text {th }}$		
Return Week/Date to Students:-	$\mathbf{8}^{\text {th }}$		
Weight of Task Assessment:-	20\%		
List of Learning Outcomes Assessed:-	1. Find a limit (numerically, graphically and analytically).		2. Calculate derivatives of complicated functions.
:---			

Assessment Name:-	Midterm Exam-2
Description of Task Assessment:-	This assignment is aligned to learning outcomes 1 , 2,3and 4.In that regard, the assignment contains questions that assess: 1)Students' gain knowledge of the fundamental definition of the derivative, 2)Students' able to understand its relationship to the tangent line. 3) Students are able to recognize when a function is not differentiable. 4) Students are able to evaluate the derivative of any function constructed via composition, multiplication, division, and addition of elementary functions. 5) Students are able to distinguish between implicitly- and explicitly-defined functions and be able to determine derivative information for implicit functions. 6) Students are able to solve elementary optimization problems and characterize the critical points of functions of one variable.
Task Assessment Due Week/Date:-	7th
Return Week/Date to Students:-	$8^{\text {th }}$
Weight of Task Assessment:-	20\%
List of Learning Outcomes Assessed:-	1. Find a limit (numerically, graphically and analytically). 2. Calculate derivatives of complicated functions. 3. Apply differentiation to problems such as related rates, graphing and optimization.
Assessment Name:-	Final Exam
Weight of Task Assessment:-	40\%
Duration:-	3 Hours
Warning:-	NIL
List of Learning Outcomes Assessed:-	1. Find a limit (numerically, graphically and analytically). 2. Calculate derivatives of complicated functions. 3. Apply differentiation to problems such as related rates, graphing and optimization. 4. Find and interpret the integrals of elementary functions. 5. Pursue later courses in calculus.

