## Course Specification <br> - (Bachelor)

| Course Title: Probability and Statistics |
| :--- | :--- |
| Course Code: STS 211 |
| Program: Applied Statistics \& Data Management |
| Department: Mathematics |
| College: College of Science |
| Institution: Majmaah University, Saudi Arabia |
| Version: |
| Last Revision Date: Pick Revision Date. |

Last Revision Date: Pick Revision Date.

Education \& Training Evaluation Commission
Table of Contents
A. General information about the course: ..... 3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods ..... 5
C. Course Content ..... 6
D. Students Assessment Activities ..... 7
E. Learning Resources and Facilities ..... 7
F. Assessment of Course Quality ..... 8
G. Specification Approval ..... 8

## A. General information about the course:

## 1. Course Identification

## 1. Credit hours: $(2+2) 3$

| A. | $\square$ University | $\square$ College | 区Department | $\square$ Track | Others |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B. | 囚Required | $\square$ Elective |  |  |  |
| 3. Level/year at which this course is offered: ( 4 ) |  |  |  |  |  |
| 4. Course general Description: |  |  |  |  |  |

This course covers the fundamental concepts in probabilities. So, the topics that will be covered are:

- Random variables and their probability distributions: The definition of discrete and continuous random variable- Probability mass function -Probability density functions mathematical expectation- variance and standard deviation.
- Some discrete probability distribution (Poisson Distribution - geometric distribution)
- Some continuous probability distributions (Normal distribution- Exponential distribution
- T distribution- distribution chi-square)
- Moment and generating functions.
- Joint, marginal and conditional probability distributions: Covariance, Correlation and

Moments- Conditional expectation
-- Conditional distribution function - Conditional expectation - Moment generating function
-- Some consequent results of independence on Joint probability functions - Covariance Correlation.

## 5. Pre-requirements for this course (if any):

STS 133 Introduction to Probability
6. Co-requisites for this course (if any):

N/A
7. Course Main Objective(s):

## هيئة تقويم التعليم والتدريب

Education \& Training Evaluation Commission

- Determine probability mass functions and the reverse
- Understanding the assumptions for each of the discrete probability distributions presented
- Select an appropriate discrete probability distribution to calculate probabilities in specific applications
- Approximating probabilities for some binomial and Poisson distributions
- The study of joint, marginal, and conditional probability distributions
- Use Statistical analysis software SPSS in, analysis and representation of data

2. Teaching mode (mark all that apply)

| No | Mode of Instruction | Contact Hours | Percentage |
| :---: | :---: | :---: | :---: |
| 1 | Traditional classroom | 25 | 55.56\% |
| 2 | E-learning | 20 | 44.44\% |
| 3 | Hybrid <br> - Traditional classroom <br> - E-learning |  |  |
| 4 | Distance learning |  |  |
| 5 | Blended |  |  |

3. Contact Hours (based on the academic semester)

| No | Activity | Contact Hours |
| ---: | :--- | :---: |
| 1. | Lectures | 25 |
| 2. | Laboratory/Studio |  |
| 3. | Field | 20 |
| 4. | Tutorial |  |
| 5. | Others (specify) | 45 |
| Total |  |  |

## B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment

## Methods

| Code | Course Learning Outcomes | Code of CLOs aligned with program | Teaching <br> Strategies | Assessment Methods |
| :---: | :---: | :---: | :---: | :---: |
| 1.0 | Knowledge and understanding |  |  |  |
| 1.1 | Having the knowledge of the conditional probability and independence. | K3 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework <br> Quiz <br> Mid Exam <br> Final Exam <br> E-exam <br> Oral Exam |
| 1.2 | Knowledge of discrete and continuous random variable. | K3 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework Quiz <br> Mid Exam <br> Final Exam E-exam Oral Exam |
| 1.3 | Knowledge of moment generating function. | K3 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework Quiz <br> Mid Exam <br> Final Exam E-exam Oral Exam |
| 1.4 | $\begin{array}{lr}\text { Use } & \begin{array}{r}\text { Statistical } \\ \text { analysis } \\ \text { software }\end{array}\end{array}$ SPSS in the analysis and representation of data | K3 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework Quiz <br> Mid Exam <br> Final Exam E-exam Oral Exam |
| ... |  |  |  |  |
| 2.0 | Skills |  |  |  |
| 2.1 | The students will be able to determine probabilities from probability mass functions and the reverse. | S3 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework Quiz <br> Mid Exam <br> Final Exam |
| 2.2 | Understanding the assumption for each of the discrete probability | S3 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework <br> Quiz <br> Mid Exam <br> Final Exam |

Education \& Training Evaluation Commission

| Code | Course Learning Outcomes | Code of CLOs aligned with program | Teaching <br> Strategies | Assessment Methods |
| :---: | :---: | :---: | :---: | :---: |
|  | distributions presented. |  |  |  |
| 2.3 | The students will explain and interpret a general knowledge of the main technical tools of elementary probability theory. | S3 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework <br> Quiz <br> Mid Exam <br> Final Exam |
| 3.0 | Values, autonomy, and responsibility |  |  |  |
| 3.1 | Standardizing normal random variables. | V2 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework <br> Quiz <br> Mid Exam <br> Final Exam |
| 3.2 | Selecting an <br> appropriate discrete <br> probability  <br> distribution to <br> calculate  <br> probabilities in <br> specific applications  | V2 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework <br> Quiz <br> Mid Exam <br> Final Exam |
| 3.3 | Approximating probabilities for some Binomial and Poisson distributions | V2 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework <br> Quiz <br> Mid Exam <br> Final Exam |
| 3.4 | Use SPSS and MINITAB program to statistically analyze of data and explain the results in statistical analysis. | V2 | Lectures <br> Presentations <br> Media Lectures <br> Tutorials | Homework <br> Quiz <br> Mid Exam <br> Final Exam |

## C. Course Content

| No | List of Topics | Contact Hours |
| :---: | :--- | :--- |
| 1. | Probability :Probability Axioms ‘Conditional Probability and Bayes <br> Theorem ‘Independence of Events | 8 |
|  | Random Variables and Their Probability Distributions :The definition of |  |
| 2. | Discrete ‘continuous random variable Distribution ‘Probability density <br> (mass) Functions-Expectation and variance | 8 |

# هيئة تقويم التعليم والتدريب 

Education \& Training Evaluation Commission
3. Moments and Generating Functions :Moments of a Distribution 8
Function $،$ Generating Functions
4. Some discrete probability Distribution- Binomial Distribution- Poisson Distribution - geometric distribution.
Some continuous probability distributions (Normal distribution- 8
5. exponential distribution - T distribution -distribution of chi square)
6. Some Statistical Packages as SPSS and MINITAB for data analysis and interpret the outputs

Total

## D. Students Assessment Activities

| No | Assessment Activities * | Assessment timing (in week no) | Percentage of Total Assessment Score |
| :---: | :---: | :---: | :---: |
| 1. | Mid exam-1 | 6 th | 15 |
| 2. | Mid exam-2 | 12 th | 15 |
| 3. | Homework | Through of semester | 10 |
| 4. | Quiz | Through of semester | 10 |
| 5. | E.exam | 14th | 10 |
| 6. | Final exam | End of semester | 40 |
| ... |  |  |  |

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

## E. Learning Resources and Facilities

## 1. References and Learning Resources

## Essential References

Supportive References

Electronic Materials

An introduction to probability and statistics, VIJAY K. ROHATGI A. K. Md. EHSANES SALEH, Wiley, Third Edition

1) Probability \& statistics for engineers \& scientists, Ronald E. Walpole and L. M.Keying Ye., Prentice Hall, (9 ${ }^{\text {th }}$ edition), 2011 ISBN 978-0-321-62911-1
2) Applied Statistics and Probability for Engineer, Douglas C. Montgomery and George C Runger, John Wiley \& Sons Canada, 4th Edition, 2017
Introductory Statistics, Wonnacott, T. H., and Wonnacott, R., John Wiley \& Sons Canada, 1969
http://www.sciencedirect.com/
https://www.khanacademy.org/math/statistics
https://www.khanacademy.org/math/statistics-probability/probability-libraryprobability/probability-library

## Other Learning Materials

## 2. Required Facilities and equipment

| facilities | Resources |
| :---: | :--- |
| (Classrooms, laboratories, exhibition rooms, <br> simulation rooms, etc.) | Classroom with capacity of 30-students. <br> Computer Lab of Mathematics Department |
| Technology equipment <br> (projector, smart board, software) | Mathematical software packages like MINITAB and SPSS <br> Python |
| Other equipment | $\underline{\text { https://www.edx.org/learn/probability }}$ |
| (depending on the nature of the specialty) |  |

## F. Assessment of Course Quality

| Assessment Areas/lssues | Assessor | Assessment Methods |
| :---: | :---: | :---: |
| Effectiveness of teaching | Students/ internal committee | Direct (Students evaluation electronically organized by Deanship of registration and admission)/ Verification of students' papers |
| Effectiveness of Students assessment | Staff members (Peer Reviewer) | Indirect (Frequent meetings consultation among the teaching staffs) |
| Quality of learning resources | Staff members (course coordinators) | Direct (Meeting between course coordinators and the tutors) |
| The extent to which CLOs have been achieved |  |  |

## Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

## G. Specification Approval

## COUNCIL /COMMITTEE

## REFERENCE NO.

## DATE

