

Course Specification (Bachelor)

Course Title: Numerical Methods

Course Code: MTHs 413

Program: BSc-Applied statistics and data management

Department: Mathematics

College: College of Sciences.

Institution: College of Sciences.

Version: Course Specification Version Number

Last Revision Date: Pick Revision Date.

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	8
G. Specification Approval	8

Others

A. General information about the course:

1. Course Identification

1. Credit hours: 2(2+1)

2. Course type

Α.	□University	□College	□Department	□Track
В.	□Required		⊠Elect	ive

3. Level/year at which this course is offered: (Elective)

4. Course general Description:

Numerical methods for solving nonlinear equations (bisection – iteration – Newton - false position ...)- errors and rates of convergence- Direct methods for solving linear systems (Gauss elimination, LU decomposition) and iterative methods (Jacobi –Gauss Seidel – Relaxation)-errors- iteration matrices and convergence of iterative methods- Polynomials interpolation (Lagrange-Newton's methods: divided differences- forward and backward differences) and analysis of errors- Numerical differentiation and integration- errors and accuracy- Gaussian integration formulas- Euler and Taylor methods for solving differential equations of first order.

5. Pre-requirements for this course (if any):

MTHS 211

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

• Having the knowledge of the ways to solve some problems in numerical ways using computers.

• Having the knowledge of how to find the derivatives and integrations using numerical methods

• Having the knowledge of how to solve matrix with large dimensions

• Having the ability of interpolation to functions and how to find a function if we know only some points

• Using numerical methods to solve integrations which have no known solutions

• Solving some problems - making some research in Libraries and using internet

No	Mode of Instruction	Contact Hours	Percentage	
1	Traditional classroom	20	66%	
2	E-learning	0		
3	HybridTraditional classroomE-learning	10	34%	
4	Distance learning			

2. Teaching mode (mark all that apply)

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	20
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	10
5.	Others (specify)	0
Total		30

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	The ability of using R, SPSS and Python programs	К2	Lectures- Presentations. Media Lectures Tutorials	Exam Assessment Quiz Final Exam
1.2	Identifying the role of approximation and mathematical approaches to analyze the real problems using	К2	Lectures- Presentations. Media Lectures Tutorials	Exam Assessment Quiz

Code	Course Learning	Code of CLOs aligned	Teaching	Assessment
coue	Outcomes	with program	Strategies	Methods
	various statistical tools.?			Final Exam
	Numerical Integration/	К2	Lectures- Presentations.	Exam
1.3	Differentiation		Madia Lasturas	Assessment
	Analyzing the		Media Lectures	Quiz
	numerical results		Tutorials	Final Exam
2.0	Skills			
	Error Analysis	S2	Lectures-	Exam
	Monitors Group		Presentations.	Assessment
2.1	Effectiveness		Media Lectures	Quiz
			Tutorials	Final Exam
	Algorithms: Working	S2	Lectures-	Exam
	with Others		Presentations.	Assessment
2.2			Media Lectures	Quiz
			Tutorials	Final Exam
	Use of Software	S2	Lectures-	Exam
	Personal Organization/Time		Presentations.	Assessment
2.3	Management		Media Lectures	Quiz
			Tutorials	Final Exam
3.0	Values, autonomy, and	d responsibility	1	
5.0				
	Ability for collaboration	V2	Lectures-	Exam
2.4	CONADOLATION		Presentations.	Assessment
3.1			Media Lectures	Quiz
			Tutorials	Final Exam
	Project management	V2	Lectures-	Exam
3.2			Presentations.	Assessment
			Media Lectures	Quiz
			Tutorials	

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	Problem Solving	V2	Lectures- Presentations.	Exam Assessment
3.3			Media Lectures	Quiz
			Tutorials	Final Exam

C. Course Content

No	List of Topics	Contact Hours
	Numerical methods for solving nonlinear equations (bisection-iteration- Newton-false position)-errors and rates of convergence.	6
	Direct methods for solving linear systems (Gauss elimination. LU decomposition) and iterative methods (Jacobi-Gauss Seidel- Relaxation) –errors- iteration matrices and convergence of iterative methods	6
3	Polynomials interpolation (Lagrange-Newton's methods: divided differences- forward and backward differences) and analysis of errors	6
4	Numerical differentiation and integration- errors and accuracy- Gaussian integration formulas-	6
5	Euler and Taylor methods for solving differential equations of first order Euler and Taylor methods for solving differential equations of first order	6
	Total	30

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quiz 1	4 th Week	2.5%
2.	Assignment/Home Work 1	5 th Week	2.5%
3.	Mid Term 1	7 th Week	20%
4	Quiz 2	9 th Week	2.5%
5	Assignment /Home Work 2	10 th Week	2.5%
6	Class Activities/Discussions	10 th Week	5%
7	Mid Term 2	12 th Week	20%
8	Electronic Test	13 th Week	5%
9	Final Exam	16 th week	40%

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
	Total		100%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	R.L. Burden and J.D. Faires: Numerical Analysis. 9th Edition Brooks / cole, 2011.
Supportive References	Endre Süli, David F. Mayers: An Introduction to Numerical Analysis, Cambridge, 2003. Rizwan Butt, Introduction to Numerical Analysis Using MATLAB, David Pallai, 2008
Electronic Materials	 <u>https://www.wolfram.com/mathematica/</u> <u>https://www.mathworks.com/discovery/numerical-analysis.html?s_tid=srchtitle</u>
Other Learning Materials	R.L. Burden and J.D. Faires: Numerical Analysis. 9th Edition Brooks / cole, 2011.

2. Required Facilities and equipment

Items	Resources
	1. The size of the room should be proportional to the number of students
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	2. Provide enough seats for students.
	3. The number of students not exceed on 30 in the classroom

Items	Resources
	1. Mathematics Lab is equipped with a computer.
Technology equipment (projector, smart board, software)	2. Provide overhead projectors and related items i.e smart Board, Wi-Fi, AV.
	3. Updated Math Software i. e Mathematica, Matlab, Maple and SPSS.
Other equipment	

(depending on the nature of the specialty)

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students/ internal committee	Direct (Students evaluation electronically organized by Deanship of registration and admission)/ Verification of students' papers
Effectiveness of Students assessment	Staff members (Peer Reviewer)	Indirect (Frequent meetings consultation among the teaching staffs)
Quality of learning resources	Staff members (course coordinators)	Direct (Meeting between course coordinators and the tutors)
The extent to which CLOs have been achieved		

Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	
REFERENCE NO.	
DATE	

