Course Specification
 - (Bachelor)

Course Title: Discrete Mathematics

Course Code: MTHS 122
Program Applied Statistics \& Data Management
Department: Mathematics

College: Science

Institution: Majmaah University, Saudi Arabia
Version: 2023
Last Revision Date: 26/09/2023

Education \& Training Evaluation Commission
Table of Contents
A. General information about the course: 3

1. Teaching mode
2. Contact Hours
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods 4
C. Course Content 5
D. Students Assessment Activities 6
E. Learning Resources and Facilities 7
3. References and Learning Resources
4. Required Facilities and Equipment
F. Assessment of Course Quality 7
G. Specification Approval 7

A. General information about the course:

1. Course Identification

1. Credit hours: $(3(2+2))$

2. Course type
A. \square University $\quad \square$ College
B.Required$\quad \square$ Department $\quad \square$ Track
3. Level/year at which this course is offered: (2.)
4. Course general Description:

Logic: Propositional Logic, Conditional Statements, Truth Tables of Compound Propositions, Logical Equivalence, Constructing New Logical Equivalence, Rules of Inference.
Proofs: Introduction to Proofs, Methods of Proving Methods: Direct Proofs, Proof by Contraposition, Proofs by Contradiction, Mistakes in Proofs, Looking for Counter Examples.
Relations: Relations and Their Properties, Equivalence Relations
Graph Theory - terminology - hand shaking theorem - types of graphs - paths Chromatic number of graphs - four color theorem - Euler and Hamilton paths and circuits and Trees.
Introduction to Boolean Algebras.
5. Pre-requirements for this course (if any):
6. Co-requisites for this course (if any):
7. Course Main Objective(s):

1. Explain Propositional Logic, Conditional Statements, Truth Tables of Compound Propositions, Logical Equivalence, Constructing New Logical Equivalence, Rules of Inference.
2. Analyze Introduction to Proofs, Methods of Proving.
3. Recognize and prove the Relations and Their Properties, Equivalence Relations.
4. Prove hand shaking theorem - types of graphs - paths - Chromatic number of graph - four color theorem - Euler and Hamilton.
5. Demonstrate knowledge of the concepts of Introduction to Boolean

Algebras.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	20	66.5%
2	E-learning	10	33.5%
	Hybrid 3	Traditional classroom	0
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	20
2.	Laboratory/Studio	0
3.	Field	20
4.	Tutorial	0
5.	Others (specify)	40
Total		

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment

Methods

| Code | Course Learning
 Outcomes | Code of CLOs aligned
 with program | Teaching
 Strategies | Assessment
 Methods |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 | Knowledge and understanding | | | |

Education \& Training Evaluation Commission

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	awareness.	K1	Points and discussions Aimed teaching: Discovery and oral questions	Midterms Final Exam E-exam Discussions E-Exam
1.3	Expand students' exposure to solve the problems	K1	Direct teaching: Inquiry based instruction Power Points and discussions Aimed teaching: Discovery and oral questions	Homework Quizzes Midterms Final Exam E-exam Discussions E-Exam
1.4	Recognize and prove the Relations and Their Properties, Equivalence Relations.	K3	Direct teaching: Inquiry based instruction Power Points and discussions Aimed teaching: Discovery and oral questions	Homework Quizzes Midterms Final Exam E-exam Discussions E-Exam
2.0	Skills			
2.1	Students should be able to solve any Discrete mathematics problem in appropriate manner without predetermining them.	S1	Direct teaching: Inquiry based instruction Power Points and discussions Aimed teaching: Discovery and oral questions	Homework Quizzes Midterms Final Exam E-exam Discussions E-Exam
2.2	Analytical skills involving paying attention to detail and ability to construct logical arguments using correct technical language related to Statistics and Data science	S1	Direct teaching: Inquiry based instruction Power Points and discussions Aimed teaching: Discovery and oral questions	Homework Quizzes Midterms Final Exam E-exam Discussions E-Exam
3.0	Values, autonomy, and	responsibility		
3.1				
3.2				
...				
C. Course Content				
No		List of Topics		Contact Hours
1.	The Language of Mathematics Mathematical statements, propositions and predicates, or, and not;			9

Education \& Training Evaluation Commission
truth tables, implication, necessary and sufficient, if rules of arithmetic; quantifiers, proof and negation of statements with quantifiers.
Direct proof, proof by contradiction, contrapositives, the induction
principle and proof by induction; changing the base case; strong induction.

Sets

Historical origins, natural numbers to complex numbers; notation, belongs to, definitions (by listing, by conditions, by construction);
subsets, equality, operations on sets, union, intersection, identities, power set, Cartesian products; power set.

Functions

Definition and examples, domain, codomain, image, formulae and examples, equality, restriction, composition, sequences and indexing, restriction, graphs, injections, surjections, bijections, their compositions, inverse functions .

Counting Sets

Finite sets, cardinality, the Pigeonhole Principle, inclusion-exclusion, Counting infinite sets ,count ability ,remunerability of the rationales
unaccountability of the reals; power sets and their cardinality, algebraic and transcendental numbers .
D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm	6	30%
2.	Homework	Through of semester	5%
3.	Project -Presentation	10	10%
$\mathbf{4}$	Quizzes	Through of semester	10%
$\mathbf{5}$	E-Tests	9	5%
$\mathbf{6}$	Final Examination	12	40%
	TOTAL		100%

[^0]
E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	P.J. Eccles, An Introduction to Mathematical Reasoning: Numbers, Sets and Functions, Cambridge University Press. Cengage learning, 1997
Supportive References	
Electronic Materials	NA
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
facilities	Lecture room with speakers and internet .access (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)
Technology equipment	
(projector, smart board, software)	Library.

F. Assessment of Course Quality

Assessment Areas/Issues		Assessor
Effectiveness of teaching	Faculty	Direct
Effectiveness of Students assessment	Program	Direct
Quality of learning resources	Leaders	Direct
The extent to which CLOs have been achieved	, Program	Indirect
Other Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)		

G. Specification Approval

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

[^0]: *Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

