

Course Specification (Bachelor)

Course Title: Data Mining

Course Code: DSC 312

Program: Applied Statistics & Data Management

Department: Mathematics

College: College of Science

Institution: Majmaah University, Saudi Arabia

Version: 2023

Last Revision Date: 20/09/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	8
G. Specification Approval	8

A. General information about the course:

1. Course Identification

1. Credit hours: (3 (2+2))					
2. Course type					
Α.	□University	□College	⊠Department	□Track	Others
B. ⊠Required □Elective					
3. Level/year at which this course is offered: (7 th level /4 th year)					

4. Course general Description:

This course introduces an introduction to the fundamentals of data mining principles and a basic understanding of data analysis techniques required to tackle real-world, data-rich problems in business and academia, including: Data set acquisition, cleaning, ,aggregation, dimension reduction, Feature Selection and extraction based on PCA. Information visualization methods are applied to data from many different application domains, including attributes or variables for the units of information. Data classification methods: Decision tree, Rule-based, Bayes' theorem, K-Nearest Neighbor and Support Vector Machine (AVM). Data Clustering methods: K-means.

5. Pre-requirements for this course (if any):

Data Analysis DSC233

6. Co-requisites for this course (if any):

7. Course Main Objective(s):

- 1- Students will develop relevant programming abilities.
- 2- Students will demonstrate proficiency with statistical analysis of data.
- 3- Students will demonstrate proficiency with data visualization methods.
- 4- Students will develop the ability to build and assess data-based model classifications.
- 5- Students will execute data analysis with professional software Python.
- 2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	30	50%
2	E-learning		
	Hybrid		
3	Traditional classroom	30	50%
	• E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	Usecomputermathematicalsoftwarein solvingmathematicalproblemssuch asdataanalysistechniques, data-richproblemsandpataset acquisition	К2	Direct teaching: Lectures Aimed teaching: Discovery and oral questions Indirect teaching: Cooperative Learning	. Homework · Quiz · Midterms · Final Exams
1.2			Direct teaching: Lectures	• Homework • Quiz • Midterms • Final Exams

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
			Aimed teaching: Discovery and oral questions Indirect teaching: Cooperative Learning.	
2.0	Skills			
2.1	Demonstrate the work independently and within a team	52	Direct teaching: Lectures Aimed teaching: Discovery and oral questions Indirect teaching: Cooperative Learning.	 Homework Quiz Midterms Final Exams
3.0	Values, autonomy, and	d responsibility		
3.1	Identify, formulate and solve mathematical problems	V2	Direct teaching: Lectures Aimed teaching: Discovery and oral questions Indirect teaching: Cooperative Learning	 Homework Quiz Midterms Final Exams

C. Course Content

No	List of Topics	Contact Hours
1	Data Mining Introduction	12

	What is data mining	
	Data mining functionalities	
	Data mining applications	
	Data mining Challenges	
	Data Preprocessing	6
	Types of Data attributes	
	Descriptive data summarization	
2	Data cleaning o Data integration and transformation	
2	• Data reduction: Dimension reduction & Feature extraction sing PCA	
	Data discretization and concept hierarchy generation	
	Lab: Data analysis applications with Python\R\Weka	
	Data Visualization and Exploration	18
	 Introduction to Concepts of data visualization and data exploration in science and their techniques. 	
	 Visualize spatial patterns, trends, outliers, and anomalies 	
	• Scatter graphs, scatter diagrams and Line plot	
3.	Histograms, Line histograms, and bar charts.	
	Heatmaps, Word Cloud and EndNote	
	Summary statistical exploration	
	Multidimensional data model Data cube and OLAP	
	Multidimensional Data Analysis in Cube Space	
	Lab: Data Visualization applications with Python\R\Weka	
	Frequent Pattern Mining o Basic concepts	6
	o Efficient and scalable frequent item set mining methods	
4.	o Correlation analysis o Sequential pattern mining	
	o Graph and tree mining	
	Lab: Data exploration applications with Weka software or Python or R	
5.	Classification and Prediction	6

	o Decision tree induction	
	o Bayesian classification	
	o Support vector machines	
	o K-Nearest neighbor methods	
	o Performance evaluation	
	Lab: Data classification applications with Python\R\Weka	
	Clustering Analysis	12
	o Partition methods	
G	o Hierarchical methods	
0.	o Density-based methods	
	o Outlier analysis	
	Lab: Data clustering applications with Python\R\Weka	
7.		
8.		
9.		
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes	Week 4 and Week 8	10%
2.	Assignments/Exercises	Every Week	10%
3.	Mid Term Exam 1	Week 6	15%
4.	Mid Term Exam 2	Week 12	15%
5.	Final Exam	After Week 15	40%
6.	E-exam-Lab	Week 13	10%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References

<u>Michael Steinbach</u> (Author), <u>Vipin Kumar</u>, Introduction to Data Mining 2nd, Amazon Warehouse, 2018

Supportivo Poforoncos	Jiawei Han, Jian Pei, Hanghang Tong, Data Mining Concepts and
Supportive References	Techniques, 4th Edition, MK Elsevier Wordmark, 2022
Electropic Materials	MIT Open Courses
	Khanacadmy
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 The size of the room should be proportional to the number of students Provide enough seats for students. The number of students do not exceed on 30 in the classroom
Technology equipment (projector, smart board, software)	 Mathematics Lab is equipped with a computer. Provide overhead projectors and related items i.e smart Board, Wi-Fi, AV. Updated Math Software i. e Mathematica, Matlab, Maple. etc
Other equipment (depending on the nature of the specialty)	NA

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect
Effectiveness of Students assessment	Peer Reviewer	Direct
Quality of learning resources	Faculty	Direct
The extent to which CLOs have been achieved	Peer Reviewer	Direct
Othor		

Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	
REFERENCE NO.	

DATE

