

Course Specification (Bachelor)

Course Title: Applications in Bioinformation

Course Code: DSC 411

Program: Applied Statistics & Data Management

Department: Mathematics

College: College of Science

Institution: Majmaah University, Saudi Arabia

Version: 2023

Last Revision Date: 9/26/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	8
G. Specification Approval	8

A. General information about the course:

1. Course Identification

1. C	redit hours:	3(2+2)				
2. C	ourse type					
Α.	□University	□College	⊠Depart	ment	□Track	Others
В.	⊠Required			Electiv	ve	
31	3 Level/vear at which this course is offered: (Level 7/4th Year)					

4. Course general Description:

The course aims to provide a basic introduction to statistical and other mathematical methods and tools in health technology, medical engineering, biology, bioinformatics, and other life sciences as well as some insight into how mathematics and mathematical statistics appear as a natural component in life sciences and health technology. The development of the student's problem-solving skills utilizing statistical and other mathematical methods, both with and without computer assistance, is another goal.

Mathematical modelling of evolution, population dynamics and growth processes in biological and microbiological systems using difference equations, differential equations, dynamical systems, mathematical image analysis and signal processing in health technology, medicine and other life sciences, mathematics for ultrasound, x-ray and microwave technology in health science; optimization of decision-making processes in biological and medical research and healthcare; statistical and other computational methods for studying disease, health status, treatments and tools (surgery, heart disease, brain afflictions, dementia, disabling diseases, diabetes, cancer, etc.).

5. Pre-requirements for this course (if any): DSC 323 (Machine Learning II)

6. Co-requisites for this course (if any):

7. Course Main Objective(s):

After complete this course students will be able to understand :

1) provide an overview of, clearly explain, and independently apply basic modern mathematical models, methods, and tools for medical engineering, biology, bioinformatics, and life sciences

2) Show that you have the independence to recognize biological, engineering, and medical issues that can be resolved mathematically and that you can select the best approach.

3) Using appropriate language, describe the tools and approaches for solving modeling issues in medical mathematics, including biostatistics, image processing, and signal processing, in a well-organized and logically sound manner.

4) Independently investigate pertinent issues in health technology and the living sciences using fundamental modeling and algorithms.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	75%
2	E-learning		0%
	Hybrid		
3	Traditional classroom	15	25%
	• E-learning		
4	Distance learning		0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	15
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning	Code of CLOs aligned	Teaching	Assessment
	Outcomes	with program	Strategies	Methods
1.0	Knowledge and under	standing		

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.1	Mathematical modelling of evolution, population dynamics and growth processes in biological and microbiological systems using difference equations, differential equations, dynamical systems,	К1	Direct teaching: Inquiry-based instruction PowerPoints Discussions Aimed teaching: Discovery Oral questions Indirect teaching: Peer Learning	Homework Quiz Midterms Final Exams E-exam Oral Exam
1.2				
2.0	Skills			
2.1				
2.2				
2.3	mathematical image analysis and signal processing in health technology, medicine and other life sciences, mathematics for ultrasound, x-ray and microwave technology in health science;	S1	Direct teaching: Inquiry-based instruction PowerPoints Discussions Aimed teaching: Discovery Oral questions Indirect teaching: Peer Learning	Homework Quiz Midterms Final Exams E-exam Oral Exam
3.0	Values, autonomy, and	d responsibility		
3.1	optimization of decision-making processes in		Direct teaching: Inquiry-based instruction PowerPoints	Homework Quiz Midterms Final Exams E-exam Oral Exam

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	biological and medical research and healthcare; statistical and other computational methods for studying disease, health status, treatments and tools	V1	Discussions Aimed teaching: Discovery Oral questions Indirect teaching: Peer Learning	
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	Mathematical modelling of evolution, population dynamics and growth processes in biological and microbiological systems using difference equations, differential equations, dynamical systems,	12
2.	Mathematical image analysis and signal processing in health technology, medicine	12
3.	and other life sciences, mathematics for ultrasound, x-ray and microwave technology in health science	12
4.	optimization of decision-making processes in biological and medical research and healthcare	12
5.	statistical and other computational methods for studying disease, health status, treatments and tools	12
	Total	60

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1 & 2	6th week & 11 th week	40%
2.	Quizes	Every 2 week	10%
3.	Assignments/ Class Activities	Every 2 weel	2.5%
4.	Assignments/ Class Activities	2 time in semester	2.5%
5	Electronic Test	One time in semester 15 week	5%
6	Final	After 15th week	40%
			100%

D. Students Assessment Activities

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Eccontial Poferonces	Mathematical Biology: I. An Introduction (Interdisciplinary Applied
Essential References	Mathematics, 17) 3rd Edition by James D. Murray
Supportive References	Introduction to Mathematical Biology Modeling, Analysis, and Simulations • By <u>Ching Shan Chou</u> , • <u>Avner Friedman</u>
Electronic Materials	https://link.springer.com/content/pdf/10.1007/978-3-319-29638- 8.pdf?pdf=button%20sticky
Other Learning Materials	https://www.mdu.se/en/malardalen-university/education/course- syllabus?id=29240

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classroom with capacity of 30-students. Computer Lab of Mathematics Department
Technology equipment (projector, smart board, software)	Mathematical & Statistical software packages like: 1- R, SPSS, MATHEMATICA. 2- MATLAB. 3- MAPLE. SCIENTIFIC WORKPLACE, PYTHON
Other equipment (depending on the nature of the specialty)	Desktop or laptop with internet facility

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students/ internal committee	Direct (Students evaluation electronically organized by Deanship of registration and admission)/ Verification of students' papers
Effectiveness of Students assessment	Staff members (Peer Reviewer)	Indirect (Frequent meetings consultation among the teaching staffs)
Quality of learning resources	Staff members (Peer Reviewer)	Indirect (Frequent meetings consultation among the teaching staffs)
The extent to which CLOs have been achieved	Staff members (Peer Reviewer)	Direct (Meeting between course coordinators and the tutors)
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	
REFERENCE NO.	
DATE	

