
54

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

Abstract
In serverless computing, servers' computing resources are distributed dynamically by the cloud
service provider. Consumers are charged based on the usage of resources, not on prepurchase
computing capability. Programming models, abstractions, and platforms for cloud services and
technologies need to evolve. This paper aims to provide large scalability and low configuration
costs for cloud applications. This paper explores testing strategies for a system that allows users
to request rides on unicorns from the Wild Rydes fleet. The proposed application to build, deploy
and tested, for serverless services developed for the Amazon Web Services cloud platform. The
results have been obtained for the parameters Duration, Error count & success rate, Call, Throttle,
Total concurrent execution and compare with the existing work. The results have a less duration,
with very high success rate with zero error. This paper will help users to help in state of art
transportation service so that people can travel faster and easier.

Keywords: Serverless computing;Lambda; DynamoDB.

Shamiksha Mishra 1, Abdullah Alenizi 2، Subrata Dutta 3

1. Department of Computer Science & Engineering, NIT Jamshedpur, India,
2019ugcs033@nitjsr.ac.in

2. Department of IT, College of Computer & Information Science, Majmaah University,
Saudi Arabia-11952

3. Department of Computer Science & Engineering, NIT Jamshedpur, India

Testing Serverless Applications with AWS Lambda:
An Automatic Move to Serverless Architectures

Introduction

Companies like Apache Open Whisk, Az-
ure Function, Google Cloud Functions,
and Open Lambda were among the first to
offer serverless computing, a cloud-based
service in which application logic is di-
vided into functions and run in response
to events [1]. These events are frequently
triggered inside between cloud platform
services as well as outside. This makes it
possible for developers to swiftly and sim-
ply create distributed apps across several
cloud providers. Applications described
by their events are triggered by actions and
events in serverless computing. Because

events are handled in response to event
streams, this language is similar to active
database systems. These ideas are fully
embraced by serverless function platforms
by dispersing their event-processing logic
across their clouds.
In addition to event-driven infrastructure,
container management, and software de-
velopment techniques are now being dis-
cussed. With serverless computing for
multi-level elasticity and graphics pro-
cessing unit (GPU) virtualization, scala-
ble event-driven computing is possible. [2].
IoT applications benefit from serverless
computing, which overlaps with edge and
Fog computing infrastructures. Serverless

55

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

computing allows large applications to be
decomposed into smaller functions. This
allows individual scaling of application
components but creates a new problem of
managing a large number of functions [3].
The field of serverless computing is ex-
tremely active. The point at which the use
of serverless or virtual machines becomes
more cost-effective has been calculated in
several studies. Serverless computing is
becoming increasingly important. It trans-
lates naturally into a microservices archi-
tecture and is on a growth and adoption
trajectory [4,5]. It is seen as the next wave
of cloud computing services. More and
more mobile and Internet-of-Things (IoT)
apps are powered by serverless computing,
which is rapidly spreading across different
cloud providers. Serverless cloud comput-
ing, which simplifies the management of
intricate internal infrastructures and sim-
ply concentrates on data analytics solu-
tions, is the solution to these issues. The
most popular program is known as Ama-
zon Web Services (AWS). Users from all
over the world can access a wide range of
infrastructure and cloud solutions through
the app [6].
Data analytics has its own set of challeng-
es, including those related to the infra-
structure needed to carry out the analytics
activities, the expense of doing so, as well
as infrastructure, storage, and security.
The Internet of Things (IoT), 5G Internet,
smart cities, and other upcoming technol-
ogies all rely on cloud computing services
to handle and store more data. The vulner-
abilities and security concerns of the cloud

paradigm will therefore increase as a result
of the heterogeneity of new firms adopting
the aforementioned technologies [7,8]. The
biggest obstacle to effective data analysis
is the infrastructure needed to handle the
massive amounts of data. Its infrastructure
consists of powerful processing units that
deliver great performance in terms of exe-
cution time, sizable storage systems, data
saved across multiple locations, and effec-
tive embedded software systems.
It is expected that as the cloud becomes
more widespread, the associated problems
can be solved and serverless computing
will dominate the future of cloud comput-
ing. It is important that the system be ex-
tensible, so that different data sources and
providers can be easily incorporated (e.g.,
metering systems), and that it be scalable
so that the system can be used from smaller
installations (e.g., a building) to very large
installations (likely entire neighborhoods),
with deployment costs proportional to in-
stallation size.

Motivation
The motivation behind this work is to
develop a testable serverless applica-
tion using AWS Lambda. Using the AWS
Lambda computing service, users can run
code without having to set up or maintain
servers. Codes run on a highly available
computing infrastructure using Lambda,
and Lambda manages all aspects of com-
puting resource management, such as ca-
pacity provisioning, server and OS main-
tenance, and auto-scaling. The Lambda
platform enables the operation of virtually
any type of back-end service and applica-

56

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

tion. The proposed system combines AWS
Amplify, Amazon Cognito, API Gateway,
AWS Lambda, and Amazon DynamoDB.
The AWS Amplify service makes it easy
to build full-stack applications on AWS
using tools and features tailored for front-
end web and mobile. Amazon Cognito can
authenticate, authorize, and manage web
and mobile application, users. APIs can
be created, published, maintained, mon-
itored, and secured using Amazon API
Gateway. APIs can be provided for cus-
tom client applications as well as APIs for
third-party app developers. A key benefit
of DynamoDB is encryption at rest, so sen-
sitive data is protected without making en-
cryption at rest cumbersome or complex.
On-demand backups are possible with
DynamoDB. To analyze a large amount of
data using serverless architecture patterns
that reduce the operational complexity of
running and managing applications, this
research attempts to research serverless
cloud computing platforms (AWS).
Our main contributions to this research
work are as follows:
• Addressing the serious issues of

first-generation serverless computing
that bring its potential for automatic
scaling into conflict with the two main
streams in computing - data-centric and
distributed computing - as well as with
open source and specialized hardware.

• To build, deploy and testing the pro-
posed applications without configuring
or managing the servers.

• To allow users to request rides on uni-
corns from the Wild Rydes fleet.

• To provided errorless and cost-effec-
tive application

The rest of the article is organized as fol-
lows. Section two contains the current state
of the art developed by various researchers.
Section three describes the research meth-
odology and proposed framework. Section
4 discusses the experimental analysis and
results. In section 5, summarization the
conclusion of the paper is done.

Related Work

The idea of serverless computing in the IT
industry holds significant potential for ex-
tending its capabilities to a broader range
of industries. Therefore, the implementa-
tion of serverless computing is not limited
to infrastructure improvements [9,10]. The
future of cloud computing will be driven
as much by business factors as by tech-
nological advances. Cloud customers are
choosing serverless computing because it
allows them to focus on industry- or do-
main-specific issues rather than server
management or distributed systems issues.
Due to the robustness of this consumer
promise, serverless computing has a very
good chance of being mainstream in the
future [11].
It is used for many different things, such
as serverless messaging, training neural
networks [12], processing videos [13], and
large data [14, 15, 16]. Without a doubt, both
the general public and experts can benefit
from their efforts. This is due to the criti-
cal relevance of comprehending how these
technologies operate. Big Data analytics
are incredibly important in today's online

57

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

environment, particularly when it comes to
the analysis of data from multi-tenant sys-
tems that are connected over the Internet
and produce a lot of multi-structured data.
In [15], the authors focus on Amazon Web
Service while discussing multi-tenant data
analytics of the serverless cloud architec-
ture (AWS). There are two different appli-
cation kinds involved. How well Big Data
functions under the constraints of time,
traffic, and data size. One generates static
data while the other generates live dynam-
ic data.
A tried-and-true Spark execution engine
called Flint [16] uses Amazon Lambda to
offer a pure pay-as-you-go pricing model.
Without the necessity for a real Spark clus-
ter, a developer can utilize PySpark as usual
with Flint.In addition to the primary Spark
data processing engine, Apache Spark [17] is
a robust all-in-one analytics engine for ma-
chine learning and large-scale distributed
computing that includes libraries for SQL,
machine learning, graph computation, and
stream processing. Applications involving
analytics, machine learning, and artificial
intelligence can benefit from Spark. Am-
azon Virtual Private Cloud (Amazon VPC
[18] permits the construction of a logically
isolated section of the AWS cloud when
some AWS services are launched on an ex-
tremely virtual network. Users have com-
plete control over how subnets and net-
works are set up.
To reduce overall data volume and adhere
to privacy laws, the increasing adoption of
new Internet-of-Things (IoT) devices ne-
cessitates more efficient bandwidth con-

sumption, lower latency, and data pre-pro-
cessing closer to the source. Even though
open-source programs and commercial
serverless cloud providers already exist

[19].The authors discussed how cloud com-
puting and its platforms are evolving, with
serverless computing emerging as the next
stage. In [20], the authors systematically re-
viewed several research papers on server-
less computing and described various
techniques to reduce execution time, cost,
or both. The design, implementation, and
deployment of serverless applications face
additional obstacles, and the serverless
computing platforms available today are
far from ideal. To the best of our knowl-
edge, these difficulties have not been thor-
oughly explored. This paper is the first
to thoroughly explore how to capture the
difficulties developers face when building
serverless applications to fill this knowl-
edge gap.
Amazon's AWS Lambda was the first
broadly used FaaS platform, even though
serverless architecture has been around for
more than ten years [21]. However, Goog-
le and Microsoft also provide their own
FaaS services, known as Google Cloud
Functions (GCF) [22] and Azure Functions
[23], respectively. Researchers still create
serverless programs using Amazon Lamb-
da today. Similar features and advantages
are provided by Google Cloud Functions,
Azure Functions, and Amazon Lamb-
da. Writing serverless apps can be done
in a wide variety of languages. The sup-
port for programming languages varies
among AWS Lambda, Azure Functions,

58

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

and Google Cloud Functions. All services
can run serverless Java and Python func-
tions natively. Yet, there are distinctions
in addition to that. Go and Ruby can only
be used with AWS Lambda and Google
Cloud Functions, whereas JavaScript and
TypeScript are only available with Azure
Functions.
It's imperative that do more than just com-
municate theories and notions. Instead, it
is now necessary to weigh the advantages
and disadvantages of serverless comput-
ing, take into account how far the industry
has come, and decide what still has to be
done and improved.
It is possible to extend serverless comput-
ing's capabilities beyond the IT industry
to a wide range of other industries. In this
way, serverless computing goes beyond
improving infrastructure. The future of
cloud computing is driven equally by busi-
ness factors and technological advances.
Rather than focusing on server manage-
ment or distributed systems, cloud custom-
ers choose serverless computing because
of its flexibility. Serverless computing has
a very good chance of becoming main-
stream in the future because of its robust
consumer promise.
The main research gap addressed in this
proposed work is highlighted below:
• First-generation serverless comput-

ing, with its autoscaling potential at
odds with prevailing trends in modern
computing, including data-centric and
distributed computing, as well as open
source and custom hardware, must be
addressed.

• To Builds and deploys application
without configuring or managing the
underlying servers.

• Serverless breaks down applications
into smaller and smaller pieces, known
as decomposition. This will lead to bet-
ter observability across applications.

• As the cloud adoption rate grows, we
predict the issues related to it can be
resolved and serverless computing will
grow to dominate the future of cloud
computing.

• Containers enable serverless applica-
tions to run within fewer attack points
than traditional architectures and to
have only one set of credentials to ac-
cess them.

• It is essential that the system be exten-
sible, so that differing data sources and
providers can be incorporated easily
(such as measurement systems), and
that it be scalable, allowing the sys-
tem to be used from smaller installa-
tion (e.g., one building) to very large
installations (probably entire neighbor-
hoods), with deployment costs propor-
tional to installation size.

Research Method

The objectives mentioned in the previous
section would be fulfilled by using the fol-
lowing research process which is shown in
Fig. 1 below.

Research Process
• Research gap and critical analysis
• Problem formulation
• Framework for serverless computing
• Build a serverless application

59

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

• Validate the result

Serverless architecture
Services can be developed and run without
having to be in control of the underlying
infrastructure thanks to a technique for
creating software called serverless archi-
tecture. By writing code and deploying it
in this way, a cloud service provider will
create servers to operate any scale of ap-
plications, databases, and storage systems.
Function as a Service (FaaS) is one of the
most well-liked serverless concepts. Each

function responds to a trigger, such as an
HTTP request or an incoming email, by
carrying out a certain action. Users pro-
vide their functions and triggers in a cloud
provider account during standard testing
methods. Depending on the circumstance,
the cloud provider either creates a new
server or executes the function on a server
that is already running when a function
is called. Fig. 2 shows the architecture of
serverless computing.

Fig. 1. Research Process

Fig.2. Architecture of Serverless Computing

60

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

Experimental Setup Analysis

Users were able to submit requests for rides
on unicorns from the Wild Rydes fleet via a
custom app. Users can specify where they
want to be picked up through an HTML-
based interface, and a RESTful web ser-
vice submits the request and sends a near-
by unicorn to the backend. Users have the
option to register and sign in through the
application, in addition to being able to do
so before requesting a ride. The applica-
tion uses AWS Lambda, Amazon API
Gateway, Amazon DynamoDB, AWS
Cognito, and AWS Amplify Console as its
architecture[21]. HTML, CSS, JavaScript,
and picture files are hosted in the amplifi-
er Console and then loaded into the user's
browser. Lambda and API Gateway are
used to send and receive data from a pub-
lic API via JavaScript. By allowing user
management and authentication, Cogni-
to secures the backend API. The Lambda
function of the API can use DynamoDB's
persistence layer as the last service to store

data.
Fig. 3 shows the proposed serverless com-
puting architecture based on AWS Lamb-
da, Amazon API Gateway, Amazon Dyna-
moDB, AWS Cognito, and AWS Amplify
Console. Amplify Console hosts static web
resources such as HTML, CSS, JavaScript,
and picture files and loads them into users'
browsers. Using Lambda and API Gate-
way, JavaScript is used in the browser to
communicate with a public API.
By allowing user management and authen-
tication, Cognito secures the backend API.
The Lambda function of the API can use
DynamoDB's persistence layer as the last
service to store data. Wild Rydes fleet ap-
plication links to a RESTful Web service
on the back end, providing users with an
HTML-based user interface that lets them
specify the location where they want to be
picked up to submit the request and send a
nearby unicorn. Users can log in and reg-
ister with the service before requesting a
ride.

Fig.3. Serverless Computing Architecture: Wild Ryde’s fleet using several AWS services

61

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

4.1 Analytics of Real-Time Data Streams
The cloud platform offered by Amazon
Web Services serves as the foundation
for the implementation's infrastructure
(AWS). AWS services give customers and
tenants the ability to swiftly build the in-
frastructure they need to suit their business
demands. AWS manages and maintains
these services. It blends;
A. a. Analyzing real-time data streams
B. b. Data analytics for dynamic web ap-

plications STEPS
1. 1. Install and configure the AWS com-

mand line interface
2. 2. Setting up the AWS Cloud9 IDE
3. 3. Static Web Hosting
• Creating the Git repository
• Deploying the site using the AWS Am-

plify Console
4. User management
• Creating an Amazon Cognito user pool

and integrating an app with our user
pool

• Update the site configuration
• Validate the deployment
• Create a new user for our user pool
5. Create a serverless backend
• Create a Lambda function to process

requests
• Create an Amazon DynamoDB table
• Create an IAM role for the function
• Validate the implementation.
6. RESTful API
• Create a new Rest API,
• Deploy the API
• Update the site configuration,
• Validating the implementation.

Install and Configure the AWS Command
Line Interface
Using pip, first install the AWS shell,
which enables us to access the AWS com-
mand line interface. Amazon will request
an AWS access key ID, and download an
access key file by logging into an AWS
account, going to security credentials, ac-
cess keys, and clicking "Create new access
key."

AWS Cloud9 IDE Setup
The AWS Cloud9 integrated development
environment (IDE) allows us to develop,
run, and debug code directly from our
browsers. Code editors, debuggers, and
terminals are included. There is no need to
install or configure any files on laptop, as
Cloud9 is already equipped with the most
important tools for common programming
languages. It is possible to access AWS re-
sources from the Cloud9 environment us-
ing the same user account as used to log in
to the AWS Management Console

Static Web Hosting
Amazon Amplify hosts static web resourc-
es such as HTML, CSS, JavaScript, and
image files for static web hosting. These
resources are loaded into the user's brows-
er. We will then deploy the website we just
committed to Git through the Amazon Am-
plify console. Setting up a location for our
static web application's code is handled by
the Amplify console, which also provides
several features to ease the lifecycle of this
application and promote best practices.

User Management
To secure the backend API, Cognito pro-

62

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

vides user management and authentication
features. To manage our users' accounts,
we will set up an Amazon Cognito user
pool in the next step. Next step is to set up
websites where users can sign up as new
users, validate their email addresses, and
log in to the website. Visitors to a website
are asked to create an account. Only need
the email address and password to register.
In this app, Amazon Cognito can be set up
to demand extra qualities. After registra-
tion, Amazon Cognito sends users a con-
firmation email with a verification code.
After receiving the verification code, users
must enter their email addresses and pass-
word on our website. Through the Amazon
Cognito console, we can also verify user
accounts with fake email addresses.
Login is possible after users confirm their
account (either by email verification or by
manual confirmation through the console).
To log in, users must enter their username
(or email address) and password. JSON
Web Tokens (JWTs) are returned by Ama-
zon Cognito after communicating with the
JavaScript function, authenticating with
SRP, and retrieving JSON Web Tokens
(JWTs). Using JWTs, in the next step we
will authenticate against the RESTful API
that we created with Amazon API Gateway
using information about the user's identity.
There are two ways for users to sign in
to Amazon Cognito. Another choice is to
use Cognito User Pools for the login and
sign-in features in our application, or Cog-
nito Identity Pools for user authentication
through SAML identity solutions, identity
systems, or social identity providers like

Facebook, Twitter, or Amazon. A user pool
powers the given registration and sign-in
pages.

Build a Serverless Backend
By using the lambda functions of the API,
Amazon DynamoDB provides a persis-
tence layer for storing data. In this step,
we will create a backend process for our
web application using AWS Lambda and
Amazon DynamoDB. In the first step, we
deployed a browser application that allows
users to request unicorns to be shipped to
the desired location. A cloud-based ser-
vice is invoked by JavaScript running in
the browser to fulfil these requests. Fig.
3 shows the serverless architecture us-
ing Amazon Lambda and DynamoDB. A
Lambda function has been implemented
that is called every time a unicorn is re-
quested. When the front-end application
requests a unicorn, the function selects one
from the fleet, records the request in Dy-
namoDB, and then provides details about
the unicorn dispatched. The next step is to
implement this connection. In this step, we
will only isolate and test our function.

RESTful API
With Lambda and API Gateway, JavaS-
cript is executed in the browser to com-
municate with a public backend API.
With Amazon API Gateway, the Lambda
function generated in the preceding step is
made available as a RESTful API. Using
our Amazon Cognito user pool from the
previous step, it is secured. AJAX calls
the exposed APIs by adding JavaScript cli-
ent-side to our static-hosted website. The

63

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

static website launched in the first stage al-
ready has a page prepared to connect with
it using the API that was implemented in
this step. The map-based interface located
at /ride.html can be used to make a unicorn
ride request. Users can choose their pick-
up location on a map and request a ride
after logging in via the /signin.html page
by clicking the "Request Unicorn" button
in the top right corner of the website. A
stream was created in Kinesis into which
information was written and from which
information was read to allow users to se-
lect W. Built on a serverless architecture,
Wild Rydes backend services are easy to
use and cost-effective to maintain, allow-
ing us to reliably meet the needs of our
ever-growing user base. Unicorns have the

advantage of being fast, secure, and relia-
ble. Their numbers have increased dramat-
ically recently, making mass transportation
more accessible. Wild Rydes are produced
by pairing idle unicorns with idle ryders
within a short travel distance. A key factor
is the shortest time to destination and prox-
imity to the destination. Our serverless ar-
chitecture streamlines and lowers the cost
of scaling our backend services, enabling
Wild Rydes to more consistently satisfy
the demands of its steadily growing user
base. Fig 4 and Fig. 5 shows, after choos-
ing a location on a map and clicking on
request unicorn, the lambda function was
assigned a unicorn and display all those
details on the application and also saved
them on AWS Dynamodb.

Fig.4. Request unicorn: location 1

Fig.5. Request unicorn: location 2

64

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

Results & Discussion

In Kinesis, a stream was created into which
information was written and from which
information was read to allow users to fol-
low Wild Ryde's unicorns on a live map.
For data analysis, two different types of
programs were run to provide a foundation.
Some of the experimental results include
time delay, data processing performance
on the Amazon platform, data aggregation
using an aggregate matrix function, and
performance analysis for both types of da-
tasets. Amazon CloudWatch receives runt-
ime metrics for Lambda's functions. The
metrics displayed provide an overall view
of all function runtimes. To view metrics
for the unqualified resource, select Filter
by. To view metrics for a specific function
version or alias, select Aliases or Versions,
select the alias or version, and then select
Monitor. Logs generated by Lambda func-
tions are automatically stored in Amazon
CloudWatch Logs. Logging statements can
be used to validate code. Click the Monitor
section to view logs for a specific function
version or alias.

Performance Metrics
• Duration
• Error count & success rate
• Call
• Throttle
• Total concurrent execution
A performance metric provides informa-
tion about the performance of a single
function call. For example, the Duration
metric indicates how many milliseconds a
function spends processing an event. The

Average and Max metrics provide infor-
mation about how much time is required
for a function call. The Average and Max
metrics give an idea of how fast function
processes events. The latency for the re-
al-time stream of the producer of the an-
alytics application data stream is between
12.40 and 13.00 milliseconds (Fig.6). The
obtained results are better than the work
reported in [15]. The continuous peaks in the
real-time data stream, where data produc-
tion is proportional to time, are recorded.

Fig.6. Function spends milliseconds processing an
event (Duration metric)

The call metric of the Lambda function
indicates the result of its execution. When
Lambda returns an error from a function,
it sends a 1 to the Errors metric. Consid-
er summing the Errors metric with a pe-
riod of 1 minute to determine the number
of function errors per minute, as shown in
Fig.7, success rate is 100%.
Invocations (Calls) that result in a function
error - the number of times that function
is called. Lambda runtime exceptions and
exceptions are thrown by code including
function errors. When timeouts or config-
uration errors occur, the runtime returns
errors. By dividing errors by calls, cal-

65

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

Fig.7. Error count and success rate Fig.9. Invocation request

Fig.10. Total Concurrent execution

Fig.8. Invocations that result in an error

culation of error rate can be done. Error
metrics include a timestamp that indicates
when the function was called, not when the
error occurred.

The total number of calls to function code,
including both successful and unsuccess-
ful calls. A call record is not created in re-
sponse to a throttled call request or a call
error. The value of Invocations represents
the total number of calls that have been re-
solved.
A throttled call request or a call error does
not result in the creation of a call record.
The total number of calls that have been
resolved is represented by the value of In-
vocations. Fig.9 shows there is no count-
ing of throttled requests or other invoca-
tion errors. The concurrency metric reports

the number of instances processing events
across functions, versions, aliases, or re-
gions in a Lambda account. These metrics
can be viewed along with the Max statistic
to see where they are concerning concur-
rency limits. The number of function in-
stances processing events at once is shown
in Fig. 10. If the reserved concurrency lim-
it for the function or the concurrent execu-
tion limitation for the Region is surpassed,
more invocation requests will be throttled.
The AWS Kinesis application was used to
perform real-time data analysis. SQL que-
ries are required for the analysis program
to provide the appropriate analysis results.

The Kinesis analytics application generat-
ed the aggregated data sets after perform-
ing an analysis of the raw input data. In

66

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

Kinesis, a feed was made to follow the uni-
corns of Wild Ryde on the real-time map.
Before analysis, the input stream was used
to collect the source data, which was made
up of duplicate records and unaggregated
records. We filtered the aggregated datasets

for analysis after using data analytics to as-
sess the data from these datasets. In Fig.11,
two datasets with aggregated columns like
minMagicPoints and maxMagicPoints are
displayed in place of magic points.
Data continuously evolves, grows, and be-

Fig.11. Aggregated data after data analytics

comes more complex with every activity
in our ever-evolving, vast, and frustrat-
ingly complex technological world. In the
modern economy, data is one of the most
valuable commodities, but without organi-
zation, segmentation, and interpretation, it
is practically worthless.

Conclusion and Future work

In this study, we build, deploy and test-
ed the methods and techniques for Ama-
zon Lambda serverless applications. After
that, we performed data analysis on these
multitenant systems using real-time data
streams and dynamic website click data.
A system performance metric can be used
to determine the performance of a single
function call. In a real-time data stream,

there are constant peaks where data crea-
tion increases over time. During execution,
the Lambda function's call metric displays
the results. Lambda runtime and code both
throw exceptions when a function fails. If
a timeout or configuration issue occurs,
the runtime will return an error. An error
or throttled call request does not result
in the creation of a call record. Calls are
represented by the value of Invocations,
which represents the total number of calls
that have been resolved. To get the right
analysis results, SQL queries are needed.
Real-time tracking of Wild Ryde unicorns
was created using Kinesis. Prior to anal-
ysis, the input stream was used to gather
the source data, which included duplicate
and unaggregated records. Data analytics

67

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

was used to analyze these datasets, and
the aggregated datasets were filtered after
analysis. Instead of magic points, two da-
tasets are created with aggregated columns
(miniMagicPoints and maximumMagic-
Points). Because the platform is self-man-
aged, users can concentrate on using the
data rather than managing the platform's
environment.In response to customer de-
mands, cloud sites can expand or contract.
A lack of storage space would have slowed
down the internal system when executing
tests with a large amount of data.

Future Work

A major focus of future research will be ad-
dressing various security problems related
to cloud security and examining the latest
developments. A better development envi-
ronment, more efficient application assem-
bly lines, and improved monitoring tools
are available. A promising perspective,
serverless integrates well with legacy sys-
tems and architectures, can come togeth-
er with other technologies like Edge, and
is integrated with legacy systems. There
are many organizations that would benefit
from serverless computing. By reducing
the number of things your teams need to
think about, you still allow them to devel-
op whatever custom application function-
ality you require. Through the combination
of the best architecture and an application,
organizations can build the most innova-
tive infrastructure for a high-performance
operation.

References

[1] Li, Y., Lin, Y., Wang, Y., Ye, K., & Xu,

C. Z. (2022). Serverless computing: state-
of-the-art, challenges, and opportunities.
IEEE Transactions on Services Computing.

[2] Naranjo, D. M., Risco, S., de Alfon-
so, C., Pérez, A., Blanquer, I., & Moltó, G.
(2020). Accelerated serverless computing
based on GPU virtualization. Journal of Par-
allel and Distributed Computing, 139, 32-42.

[3] Kjorveziroski, V., Filiposka, S., &
Trajkovik, V. (2021). Iot serverless com-
puting at the edge: A systematic mapping
review. Computers, 10(10), 130.

[4] Sadek, J., Craig, D., & Trenell, M.
(2022). Design and Implementation of
Medical Searching System Based on Mi-
croservices and Serverless Architectures.
Procedia Computer Science, 196, 615-622.

[5] Kjorveziroski, V., Bernad Canto,
C., Juan Roig, P., Gilly, K., Mishev, A.,
Trajkovik, V., & Filiposka, S. (2021). IoT
serverless computing at the edge: Open is-
sues and research direction. Transactions
on Networks and Communications.

[6] AL-Jumaili, A. H. A., Muniyandi,
R. C., Hasan, M. K., Paw, J. K. S., & Sin-
gh, M. J. (2023). Big Data Analytics Using
Cloud Computing Based Frameworks for
Power Management Systems: Status, Con-
straints, and Future Recommendations.
Sensors, 23(6), 2952.

[7] El Kafhali, S., El Mir, I., & Hanini,
M. (2022). Security threats, defense mech-
anisms, challenges, and future directions in
cloud computing. Archives of Computation-
al Methods in Engineering, 29(1), 223-246.

[8] Tabrizchi, H., & Kuchaki Rafsanja-

68

Journal of Engineering and Applied Sciences, Vol. 10, Issue (1) November 2023

Testing Serverless Applications with AWS Lambda: An Automatic Move to Serverless Architectures

ni, M. (2020). A survey on security chal-
lenges in cloud computing: issues, threats,
and solutions. The journal of supercom-
puting, 76(12), 9493-9532.

[9] Golec, M., Ozturac, R., Pooranian,
Z., Gill, S. S., & Buyya, R. (2021). IFaaS-
Bus: A security-and privacy-based light-
weight framework for serverless comput-
ing using IoT and machine learning. IEEE
Transactions on Industrial Informatics,
18(5), 3522-3529.

[10] Casale, G., Artac, M., Van Den
Heuvel, W. J., van Hoorn, A., Jakovits,
P., Leymann, F., ... & Zhu, L. (2020). Ra-
don: rational decomposition and orchestra-
tion for serverless computing. SICS Soft-
ware-Intensive Cyber-Physical Systems,
35, 77-87.

[11] Chleier-Smith, J., Sreekanti, V.,
Khandelwal, A., Carreira, J., Yadwadkar,
N. J., Popa, R. A., ... & Patterson, D. A.
(2021). What serverless computing is and
should become: The next phase of cloud
computing. Communications of the ACM,
64(5), 76-84.

[12] Andi, H. K. (2021). Analysis of
serverless computing techniques in cloud
software framework. Journal of IoT in So-
cial, Mobile, Analytics, and Cloud, 3(3),
221-234.

[13] Shafiei, H., Khonsari, A., & Mousa-
vi, P. (2022). Serverless computing: a
survey of opportunities, challenges, and
applications. ACM Computing Surveys,
54(11s), 1-32.

[14] Muller, L., Chrysoulas, C., Pitropa-

kis, N., & Barclay, P. J. (2020). A traffic
analysis on serverless computing based on
the example of a file upload stream on aws
lambda. Big Data and Cognitive Comput-
ing, 4(4), 38.

[15] Ali, M. H., Hosain, M. S., & Hos-
sain, M. A. (2021). Big Data analysis using
BigQuery on cloud computing platform.
Australian JofEng Inno Tech, 3(1), 1-9.

[16] Kim, Y., & Lin, J. (2018, July). Server-
less data analytics with flint. In 2018 IEEE
11th International Conference on Cloud
Computing (CLOUD) (pp. 451-455). IEEE.

[17] https://spark.apache.org/

[18] Sharma, V., Nigam, V., & Shar-
ma, A. K. (2020). Cognitive analysis of
deploying web applications on microsoft
windows azure and amazon web services
in global scenario. Materials Today: Pro-
ceedings.

[19] Computers | Free Full-Text | IoT
Serverless Computing at the Edge: A Sys-
tematic Mapping Review (mdpi.com)

[20] An empirical study on challenges
of application development in serverless
computing https://ieeexplore.ieee.org/ab-
stract/document/9305905/

[21] Serverless Computing - AWS
Lambda - Amazon Web Services (https://
aws.amazon.com/lambda)

[22] Cloud Functions | Google Cloud
(https://cloud.google.com)

[23] Azure Functions – Serverless Func-
tions in Computing | Microsoft Azure
(https://acloudguru.com/azure/functions)

