FLUID MECHANICS LAB | S.No. | Item
Name | Model | Manufacturer | Usage | status | Picture | |-------|--|-------|-------------------|--|----------------|---------| | 1 | Notch | Н6 | TQ
Techquiment | A comprehensive study of flow over weirs, including: • Investigation of the head against discharge • Coefficient of discharge • Rectangular and different angled V - notches | Working | | | 2 | Digital
Hydraulic
Bench | H1F | TQ
Techquiment | This product supplies a controlled flow of water to a wide variety of laboratory experiment modules. | Not
working | | | 3 | Friction
loss in a
pipe
Apparatus | Н7 | TQ
Techquiment | Study of friction loss in a pipe, including: Investigations of laminar and turbulent flows Demonstration and measurement in the change of the laws of resistance (friction factor) from laminar to turbulent flow. Finding the critical Reynolds number. Verifying Poiseuille's equation and the coefficient of viscosity for water in the laminar flow region | Working | | | 4 | Flow
Meter
Calibration | H40 | TQ
Techquiment | Accuracy of nozzle flow meters. Losses and k value. Calculation of the coefficient of discharge. | Working | | | 5 | Pipework
energy
losses | Н34 | TQ
Techquiment | Measurement and comparison of losses in: • Mitre bend • Elbow bend. • Large radius bend. • Sudden expansion. • Sudden contraction | Working | | | 6 | Flow-
Through
an Orifice | Н4 | TQ
Techquiment | Investigations into a variety of orifices over a range of flow rates, including • Determination of contraction and velocity coefficients. • Calculation of discharge coefficient • Determination of actual discharge coefficient, and comparison with calculated values | Working | | |----|--------------------------------|-----|-------------------|--|----------------|--| | 7 | Pelton
Turbine | H19 | TQ
Techquiment | To study the: • Performance charts of power, speed, torque, and efficiency. • The effect of spear valve position | Working | | | 8 | Francis
Turbine | H18 | TQ
Techquiment | To study the: • Efficiency of a Francis turbine. • Performance of a Francis turbine at different flow rates. • The effect of different guide vane settings on turbine performance | Working | | | 9 | Bernoulli's
Theorem | Н5 | TQ
Techquiment | A comprehensive study of a Venturi meter and Bernoulli's theorem, including: Direct measurement of the static head distribution along with a Venturi tube Measurement of the meter coefficient of discharge at various flow rates | Working | BHOWN FITTED BEACH (SHI, AV | | 10 | Impact of
a jet | Н8 | TQ
Techquiment | Measurement of the impact force and comparison with momentum change of four different plates: • Flat plate. • Hemispherical plate. • Inclined flat the plate. • 120-degree conical plate • 30-degree angled plate | Not
working | The state of s | ## **Mechanical Measurements Lab** | S.No. | Item
Name | Model | Manufacturer | Usage | status | Picture | |-------|------------------------------------|---------------|--------------|---|---------|---------| | 1 | Digimatic
Outside
Micrometer | Series
293 | Mitutoyo | Outside dimension measurement Faster measurement Accurate measurement | Working | 1922 | | 2 | Vernier
caliper | Series
530 | Mitutoyo | To measure plain and basic Design Can measure steps Carbied tipped caliper so optimal for measurements of castings, grinding stones. | Working | | | 3 | ABS
Digimatic
Claiper | Series 532 | Mitutoyo | Fine augments
aids slider
position Allows step
measurements | Working | | | 4 | Anvil type micrometer | Series
125 | Metrica | For measuring
work piece
features when
access is
difficult | | | | 5 | Height
Gauge | Series
516 | Mitutoyo | Fits comfirtbly on the hand Easy movement on the Surface plate Large knocking nobs for easy measurement | Working | | | 6 | Height
gauge with
Counter | Series
514 | Mitutoyo | • Improved operability | Working | | |---|---------------------------------|---------------|----------|--|---------|--| | 7 | Gauge
blocks | Series
516 | Mitutoyo | Boxed gauges to measured wide variety of dimensions Depending on convenience and environmental also can be considered. | Working | | | 8 | Universal
Hardness
Tester | HRB
187.5 | Mitutoyo | • Estimate
Brinell/Vickers
Hardness of any
material | Working | | # **MECHANICAL POWER LAB (ME 494)** | S.No | Item
Name | Model | Manufact
urer | Usage | status | Picture | |------|--|---------------------|---------------------------------|--|--|---------| | 1 | Thermal expansion Apparatus | 10.0103564
-2040 | Gunt
Hamburg | Learning Objectives A. Thermal expansion of different materials such as PVC, PE, copper and steel B. Determination of thermal expansion coefficients and the expansion force. C. Measurement of pipe elongation D. Effect of varying pipe diameter E. Expansion compensator | Not Working | | | 2 | Rankine
Cycler | 772 WUSA | Turbine
Technolog
ies LTD | Learning Objectives. To study the working and performance analysis of Rankine Cycle | Not working | | | 3 | Heat
Exchanger | TICT109 | Cussons
Technolog
ies | Learning Objectives. A. To determine the relationship between Nusselts and Rey-nolds numbers applied to a single heated tube positioned transversely to a stream of air. B. To determine the effect of change of diameter on the heat transfer coefficient to a single tube in cross flow. C. To determine the effect of change of position of the heated tube within a cross flow tube bundle. D. To examine the effect of heat transfer of a Flat Plate. | Working
but Software is
required | | | 4 | Vapor
Condensat
ion
Apparatus | TE6A/EA2
01780 | Gunt
Hamburg | Learning Objectives A. Dropwise and film condensation B. Determination of the heat transfer coefficient | Working but
software
required | | | | | I | | T | | | |---|---|------------------|-------------------------------|---|---|------------| | | | | | C. Effect of pressure, temperature and non-condensable gases on the heat transfer coefficient | | | | 5 | Vapor
Absorptio
n System | ET480,201
480 | Gunt
Hamburg | Learning Objectives A. Demonstrate the basic principle of an absorption refrigeration system B. Absorption refrigeration system and its main components C. Operating behavior under load | Working but
some
maintenance
required with
Gas cylinder | Sensitive. | | 6 | Four
Stroke
Petrol
Engine
Model | BSC-502 | Best
Scientific
Company | Learning Objectives A. Demonstration engine model is mounted on metal base with mounted diagram. B. Ignition is shown by means of miniature. C. Carburetor and fuel supply are sectioned. | Working | | | 7 | Shell and
Tube Heat
Exchanger | TICT | Edibon | Learning Objectives a.Heating Water in computer controlled thermostatic bath. b.Regulation and measurement cold and hot water flows and temperatures. c. Measurement of pressure drop | Not Working | |