Yahya Awaji Madkhali

EDUCATION 2021 Phd in Biomedical Science, Hull University, Hull, UK. 2016 2015 **MSc** In Biomedical Science, Nottingham Trent University, Nottingham, UK. 2014 2013 learning English as a second language, Georgia Tech English Institute, Atlanta, USA. 2012 2007 BSc in Medical Technology, King Abdul Aziz University, Medical Applied Sciences, Jeddah, Saudi Arabia. 2003

Medical Laboratory Department, Saudi Arabia. Work as a demonstrator at Majma'ah University, Medical Laboratory Department, Saudi Arabia. Worked at King Khaled University hospital, Laboratory Department, Riyadh, Saudi Arabia.

Work as assistance professor at Majma'ah University,

EXPERIENCE

(<u>-</u>)

Present

SEMINARS, WORKSHOPS, AND CONFERENCES ATTENDANCE

- 18-19 April 2007: 3rd National Applied Medical Sciences Students Meeting.
- 10 December 2006: Annual Clinical Immunology & Allergy Workshop.
- 22-25 march 2004: Saudi international transfusion medicine symposium
- 25-27 November2006: international Saudi symposium on homeostasis and thrombosis
- 21-23 November 2005: International Saudi Symposium of Pediatric Hematology/Oncology.
- 6 May 2007: Establishing Electronic Policy & Procedure Manual Workshop.
- 13 November 2013. Workshop in nanotechnology, college of Medical Applied sciences, Majmaah University.
- Jan 1st, 2014: The first scientific day, faculty of science, Majmaah University.

TRAINING EXPERIENCES:

- Three months of training in King Fahd Hospital in Jizan, hematology department 2006-2007.
- Three months of training in King Abdul Aziz University Hospital, hematology department. 2006-2007.
- Three months of training in king Abdul Aziz Hospital &oncology center in Jeddah, hematology department 2006-2007.
- Three months Training in king Fahd Research center at King Abdul Aziz University, Genomic Medical Unit

PERSONAL INFORMATION:

Place of birth: Jizan, Saudi Arabia

Date of Birth: November 7, 1984

Nationality Saudi

Gender Male

CONTACTS

- +966 503095462
- Y.madkhali@mu.edu.sa
- **⊕** Saudi
- 🗣 🛾 AlMajma'ah –Saudi Arabia

REFERENCES

Dr. Camille c.ettelaie@hull.ac.uk
Biomedical Science, Hull University, UK.

E-mail: c.ettelaie@hull.ac.uk

Prof. John Greenman

Biomedical Science, Hull University, UK.

E-mail: j.greenman@hull.ac.uk

PUBLICATIONS AND PRESENTATIONS:

- Madkhali, Y., Rondon, A., Featherby, S., Maraveyas, A., Greenman, J. and Ettelaie, C.
 (2021) Factor VIIa Regulates the Level of Cell-Surface Tissue Factor through Separate but Cooperative Mechanisms. Cancers, 13(15), p.3718.
- Madkhali, Y., Featherby, S., Collier, M., Maraveyas, A., Greenman, J. and Ettelaie, C. (2019) The Ratio of Factor VIIa:Tissue Factor Content within Microvesicles Determines the Differential Influence on Endothelial Cells. TH Open, 03(02), 132-145.
- Featherby, S., Madkhali, Y., Maraveyas, A. and Ettelaie, C. (2019) Apixaban Suppresses the Release of TF-Positive Microvesicles and Restrains Cancer Cell Proliferation through Directly Inhibiting TF-fVIIa Activity. Thrombosis and Haemostasis, 119(09),1419-1432
- Ethaeb, A., Mohammad, M., Madkhali, Y., Featherby, S., Maraveyas, A., Greenman, J. and Ettelaie, C. (2019) Accumulation of tissue factor in endothelial cells promotes cellular apoptosis through over-activation of Src1 and involves β1-integrin signalling. Apoptosis, 25(1-2),29-41
- Madkhali Y, Greenman J, Ettelaie C (2017) The synergy between tissue factor-containing microvesicles and PAR2 activation in the induction of apoptosis is dependent on the properties of the cancer-derived microvesicles (poster). Presented at annual conference of extracellular vesicles. Cambridge, UK.
 - Madkhali Y, Maraveyas A, Greenman J, Ettelaie C (2017) Cancer cell-derived microvesicles induce endothelial cell apoptosis mediated through tissue factor, factor VII and PAR2 activation (poster). Presented at the 9th international conference on thrombosis & hemostasis issues in cancer. University of Bergamo, Italy.
- Madkhali Y, Greenman J, Ettelaie C (2017) The synergy between tissue factor-containing microvesicles and PAR2 activation in the induction of apoptosis is dependent on the properties of the cancer-derived microvesicles (poster). Presented in BSHT Annual Scientific Meeting. University of Warwick, UK.
 - Madkhali Y, Maraveyas A, Greenman J, Ettelaie C (2018) Investigation of Mechanism of Tissue Factor-Mediated Cell Apoptosis (poster). Presented in BSHT Annual Scientific Meeting. University of Warwick, UK

- Madkhali Y, Maraveyas A, Greenman J, Ettelaie C (2019) The ratio of factor VIIa:tissue factor content within microvesicles determines the differential influence on endothelial cells (poster). Presented at congress of the international society on thrombosis and haemostasis. Melbourne, Australia
- Madkhali Y, Maraveyas A, Greenman J, Ettelaie C (2019) Excess tissue factor is preferentially cleared from endothelial cells through microvesicle release and then, by caveolae-mediated internalisation, through a mechanism requiring fVIIa (poster). Presented at congress of the international society on thrombosis and haemostasis. Melbourne, Australia
- Madkhali Y, Maraveyas A, Greenman J, Ettelaie C (2019) The ratio of factor VIIa:tissue factor content within microvesicles determines the differential influence on endothelial cells (poster). Presented at European Congress on Thrombosis and Haemostasis. Glasgow, Scotland.
- Madkhali Y, Featherby S, Maraveyas A, Greenman J, Ettelaie C (2018) Cancer Cells Release Active TF-fVIIa Complex Which Can Be Directly Inhibited by Apixaban. Presented in BSHT Annual Scientific Meeting. University of Warwick, UK.