Ibrahim AlMohimeed, Ph.D.

i.almohimeed@mu.edu.sa

https://faculty.mu.edu.sa/ialmohimeed/

in www.linkedin.com/in/ibrahimalmohimeed/

Education

Doctor of Philosophy (PhD) Electric and Computer Engineering, Carleton University, Ottawa, Canada.

2011 – 2013 Master of Applied Science (MASc) in Biomedical Engineering, Carleton University, Ottawa, Canada.

Bachelor of Applied Science (BASc) in Biomedical Technology, King Saud University, Riyadh, Saudi Arabia.

Work Experience

Assistant Professor. Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.

Lecturer. Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.

Research Assistant. Department of Systems and Computer Engineering, Faculty of Engineering, Carleton University, Ottawa, Canada.

Teaching Assistant. Department of Systems and Computer Engineering, Faculty of Engineering, Carleton University, Ottawa, Canada.

Undergraduate Co-Op Supervisor. Department of Systems and Computer Engineering, Faculty of Engineering, Carleton University, Ottawa, Canada. ▶

2009 – 2013 • Teaching Assistant. Department of Medical Equipment Technology, College of Applied Medical Sciences Majmaah University, Majmaah, Saudi Arabia.

2008 – 2009 Clinical Engineering Internship. Department of Clinical Engineering, King Abdulaziz Medical City, Riyadh, Saudi Arabia.

Research Interests

- Ultrasonic Sensor Development.
- Medical Ultrasonic Measurement.
- Physiological Monitoring.
- Medical Sensors.
- ▶ Biomedical Signal Analysis.

Research Publications

- **AlMohimeed**, **I.** (2021). Design and construction of a double-layer pvdf wearable ultrasonic sensor for the quantitative assessment of muscle contractile properties (Doctoral dissertation, Carleton University, Ottawa, Canada).
- AlMohimeed, I., & Ono, Y. (2020). Ultrasound measurement of skeletal muscle contractile parameters using flexible and wearable single-element ultrasonic sensor. *Sensors*, *20*(13), 3616.

 Odoi:10.3390/s20133616

- Yeung, E., **AlMohimeed**, I., & Ono, Y. (2020). Ultrasonic sensor and method for monitoring of skeletal muscle contraction evoked by electromyostimulation. In *Proceeding of international symposium on advanced biomedical ultrasound* (pp. 1–2).
- **AlMohimeed**, I., & Ono, Y. (2019). Flexible and wearable ultrasonic sensor for assessment of skeletal muscle contractile properties. In *Proceeding of IEEE international conference on flexible and printable sensors and systems (FLEPS).* 6 doi:10.1109/fleps.2019.8792301
- AlMohimeed, I., Agarwal, M., & Ono, Y. (2018). Wearable Ultrasonic Sensor Using Double-Layer PVDF Films for Monitoring Tissue Motion. In Proceeding of ieee canadian conference on electrical & computer engineering (ccece) (pp. 1–4). Odoi:10.1109/ccece.2018.8447859
- **AlMohimeed**, **I.**, Turkistani, H., & Ono, Y. (2013). Development of wearable and flexible ultrasonic sensor for skeletal muscle monitoring. In *Proceeding of IEEE international ultrasonics symposium (IUS)* (pp. 1137–1140). **6** doi:10.1109/ultsym.2013.0291
- **AlMohimeed**, **I.** (2013). Development of Wearable Ultrasonic Sensor s for Monitoring Muscle Contraction (Master's thesis, Carleton University, Ottawa, Canada).
- 9 Turkistani, H., **AlMohimeed**, **I.**, & Ono, Y. (2013). Continuous monitoring of muscle thickness changes during isometric contraction using a wearable ultrasonic sensor. In *Proceeding of canadian medical and biological engineering society (cmbes)* (Vol. 36).