	Code & No:	CS 472						
	Credits:	3 (2-2-0)						
Probability Statistics for Data Science	Pre-requisite:	STAT 102						
	Co-requisite:							
	Level:	9 /10						
Course Description: This course is aimed to provide the probability and statistics for data scientist with the								
application of programming languages. Topics covered include Exploratory Data Analysis, Data and								
Sampling Distributions, Probability Theory, Random Variables, Stochastic Processes, Statistical Experiments								
and Significance Testing. Regression and Prediction. Classification. and Clustering. Statistical Machine								
Learning, Unsupervised Learning.	Ū							
Course Aims:								
1) To provide the conceptual knowledge data science.								
2) To provide the important and useful from the data scie	nce perspective.							
3) To develop the skills of applying the techniques & t	ools of statistica	al practice and empire	rical					
research.								
To provide the knowledge and applications of software package (R- Language).								
Course Learning Outcomes (CLOs):								
After completing this course, the students will be able								
1. To explore and analyze the data.								
2. To model projects (whether in data science or in research) with the statistical tool among predictors, and								
between predictors and a target variable.								
3. To apply the sampling techniques from the Big Data projects.								
4. To design an experiment for test of the hypothesis.								
5. To take the automated decision faced with a problem.								
o. To apply the basic statistical techniques on data, using statistical software package (N).								
No Topics	Weeks	Teaching						
		hours						
1 Probability review	1	2						

2	Random variables (Review)	1	2	
3	Non-parametric inference, Parametric inference	1	2	
4	Exploratory Data Analysis	3	6	
5	Data and Sampling Distributions	2	4	
6	Statistical Experiments and Significance Testing	3	6	
7	Regression and Prediction	2	4	
8	Classification, Naive Bayes, Discriminant Analysis	2	4	
	Total	14	28	

Textbook:

• Peter Bruce and Andrew Bruce, Practical Statistics for Data Scientists, O'Reilly Media, 2017, 978-1-491-95296-2

Essential References:

- Colin O. Wu Xin Tian, Nonparametric Models for Longitudinal Data with Implementation in R, CRC Press, 978-1-4665-1600-7
- Hongshik Ahn, Probability and Statistics for Science and Engineering with Examples in R [2nd ed.] Cognella, 2018 978-1-5165-3111-0
- Jay L. Devore, Probability and Statistics for Engineering and the Sciences. 9th Edition, Cengage Learning. ISBN: 1305251806.