	Code & No:	CS 471
	Credits:	3(3+1+0)
Big Data Analytics	Pre-requisite:	STAT102
	Co-requisite:	
	Level:	9 or 10

Course Description: This course is designed for students who have no previous knowledge of data analytics but wish to acquire these skills in a short period of time. These students will learn how to analyze large data sets and identify patterns that will improve any company's and organization decision-making process.

Course Aims: After completing the course, they will be able to:

- Capture, categorize, simplify, normalize and prepare data to be processed
- Work with and analyze large data sets
- Visually represent analysis's conclusions to technical and non-technical audiences
- Use the most common algorithms, to make sense of large amounts of data, which are applicable to most business and management problems.

Course Learning Outcomes (CLOs):

- 1. To understand the basics of big data analytics
- 2. To understand the data sampling, statistical analysis, visual data exploration
- 3. To apply predictive analytics techniques for real time problems
- 4. To perform descriptive and social analytics
- 5. To use big data tools and techniques

No.	Topics	Weeks	Teaching hours
1	Big Data and Analytics- Example Applications, Basic Nomenclature, Analytics Process Model, Analytics, Analytical Model Requirements	1	3
2	Data Collection, Sampling and Preprocessing- Types of Data Sources, Sampling, Types of Data Elements, Visual Data Exploration and Exploratory Statistical Analysis, Missing Values, Outlier Detection and Treatment, Standardizing Data, Categorization	2	6

3	Predictive Analytics- Linear Regression, Logistic Regression, Decision Trees, Neural Networks, Support Vector Machines, Ensemble Methods, Multiclass Classification Techniques, Evaluating Predictive Models	3	9	
4	Descriptive Analytics- Association Rules, Sequence Rules, Segmentation	1	3	
5	Social Network Analytics- Social Network Definitions, Social Network Metrics, Social Network Learning, Relational Neighbor Classifier, Probabilistic Relational Neighbor Classifier	2	6	
6	Analytics: Putting It All to Work- Back testing Analytical Models, Benchmarking, Data Quality, Software Privacy, Model Design and Documentation	1	3	
7	Example Applications: Credit Risk Modeling, Fraud Detection, Recommender Systems, Web Analytics, Social Media Analytics	2	6	
8	Big Data Tools and Techniques- Understanding Big Data Storage, A General Overview of High-Performance Architecture, HDFS, MapReduce and YARN, Zookeeper, HBase, Hive, Pig, Mahout, NoSQL	2	6	
	Total	14	42	

Textbook:

- Bart Baesens Analytics in a Big Data World_ The Essential Guide to Data Science and its Applications, Wiley, 2014
- David Loshin, Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph, Elsevier, 2013, ISBN: 978-0-12-417319-4

Essential References:

 Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman - Big Data For Dummies (2013, For Dummies)