		Code & No:	CS 464				
		Credits:	3(3,0,1)				
	Robotics	Pre-requisite:	CS 320				
		Co-requisite:					
		Level:	9/10				
Course Description	on: An introduction to the fundamentals of robotics. S	tudents will learn	the fundamentals	of			
-							
-	kinematics, inverse kinematics, Jacobian, velocity, con	figuration space,	motion planning a	iu patri			
planning algorithms.							
Course Aims:							
Course Anns.							
1) Model	the kinematics of robotic systems						
,							
, ,							
, ,	velocities						
5) Conve							
6) Compu							
7) Apply the generated motion path to the robotic system to generate a proper motion trajectory							
8) Apply t							
Course Learning Outcomes (CLOs):							
1. Understand background of robotics and various types of robots							
 Study about physical structure , orientation of robots , joint angle movement 							
3. Study techniques for Computing the linear and angular velocities of the end-effector of a robotic system							
from the joint angle velocities							
4. Able to apply the generated motion path to the robotic system to generate a proper motion trajectory							
5. Apply the learned knowledge to several robotic systems: including robotic manipulators, humanoid robots.							
No.	Topics	Weeks	Teaching				
			hours				
1	Introduction to Robotics	1	3				
2	Representing positions and rotations	2	3				
		-					

3	Rotational transformations and parameterizations of rotations	3	3	
4	Homogeneous transformations, kinematic chains and DH convention	4	3	
5	DH convention and forward kinematics	5	3	
6	Inverse kinematics and angular velocity and Kinematics lab	6,7	6	
7	The Jacobian matrix	8,9	6	
8	Trajectory design and configuration space	10	3	
9	Configuration space with examples and motion planning introduction	11	3	
10	Motion planning: potential field and PRM ,Motion planning roadmap and motion planning review	12,13	6	
11	Mobile robot, sensors and actuators	14	3	
	Total	14	42	

Textbook:

 Robot Modeling and Control by Mark M. Spong, Seth Hutchinso, and M. Vidyasagar (ISBN: 9780471649908)

Essential References:

- Robot Building for Beginners, 2nd Edition (Technology in Action) 2nd Edition by David Cook ISBN-13: 978-1430227489
- Introduction to Robotics by SK Saha , McGraw Hill publications ISBN-10: 0070140014, ISBN-13: 978-0070140011
- Robot Programming : A practical guide to behaviour based robotics, Joseph L Jones, McGrawHill company.