	Code & No:	<u>CS 437</u>
	Credits:	<u>3(3,0,1)</u>
Software Requirements Analysis	Pre-requisite:	<u>CS360</u>
	Co-requisite:	None
	Level:	<u>9 or 10</u>

Module Description:

This course helps in learning techniques for eliciting requirements. Languages and models for representing requirements. Analysis and validation techniques, including need, goal and use-case analysis. Requirements in the context of system engineering. Specifying and measuring external qualities: performance, reliability, availability, safety, security, etc. Specifying and analyzing requirements for various types of systems: embedded systems, consumer systems, web-based systems, business systems, systems for scientists and other engineers. Resolving feature interactions. Requirements documentation standards. Traceability. Human factors. Requirements in the context agile processes. Requirements management: Handling requirements changes.

Module Aims:

- Elicit requirements using a variety of techniques
- Organize and prioritize requirements
- Apply analysis techniques such as needs analysis, goal analysis, and use case analysis
- Validate requirements according to criteria such as feasibility, clarity, freedom from ambiguity, etc.
- Represent functional and non-functional requirements for different types of systems using formal and informal techniques
- Specify and measure quality attributes
- Negotiate among different stakeholders in order to agree on a set of requirements
- Detect and resolve feature interactions

Student Outcomes (SOs):

 \boxtimes (a) An ability to apply knowledge of computing and mathematics appropriate to the program's student outcomes and to the discipline

 \boxtimes (b) An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution

 \Box (c) An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs

 \Box (d) An ability to function effectively on teams to accomplish a common goal

 \Box (e) An understanding of professional, ethical, legal, security and social issues and responsibilities

⊠(f) An ability to communicate effectively with a range of audiences

□(g) An ability to analyze the local and global impact of computing on individuals, organizations, and society

□(h) Recognition of the need for and an ability to engage in continuing professional development

⊠(i) An ability to use current techniques, skills, and tools necessary for computing practice.

 \Box (j) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices. [CS]

 \boxtimes (k) An ability to apply design and development principles in the construction of software systems of varying complexity. [CS]

 \Box (j) An ability to use and apply current technical concepts and practices in the core information technologies of human computer interaction, information management, programming, networking, and web systems and technologies. [IT]

 \Box (k) An ability to identify and analyze user needs and take them into account in the selection, creation, evaluation, and administration of computer-based systems. [IT]

□(l) An ability to effectively integrate IT-based solutions into the user environment. [IT]

□(m) An understanding of best practices and standards and their application. [IT]

□(n) An ability to assist in the creation of an effective project plan. [IT] Course Learning Outcomes (CLOs):

- 1. To understand various issues and difficulties in requirements engineering.
- 2. To be able to use several requirements elicitation techniques to obtain requirements from stakeholders.
- 3. To understand the use of various informal and semi-formal languages to document requirements.
- 4. To Analyze and model requirements using appropriate object-oriented techniques using UML.
- 5. Able to validate requirements and understands Requirements management.

SOs and CLOs Mapp	ing:													
CLO/SO	а	b	С	d	е	f	g	h	i	j	k	1	m	n
CL01	\checkmark					\checkmark								
CLO2									\checkmark					
CLO3	\checkmark													
CLO4														
CLO5											\checkmark			

No.	Topics	Weeks	Teaching hours
1	Basics of requirements engineering	1	3
2	Requirements inception and elicitation	1	3
3	Requirements analysis and specification - modeling techniques- inception vs. specification-techniques for writing high-quality requirements	2	6
4	Documentation standards (e.g., IEEE 830-1998)-goal- oriented modeling-Structured analysis and other techniques	2	6
5	UML v2 and URN notations-external qualities management, contract specification	2	6
6	Requirements verification, and validation	2	6
7	Requirements management traceability, priorities, changes, baselines-tool support (e.g., DOORS)	2	6
8	Examples of requirements approaches in typical development processes-requirements for various types of systems: embedded systems, consumer systems, web-based systems, business systems, systems for scientists and other engineers	1	3
9	Requirements engineering in RUP-Requirements engineering in agile methods	1	3
	Total	14	42

• Requirements Engineering 3rd ed. 2011 Edition by Elizabeth Hull , Ken Jackson Jeremy Dick

Essential references:

- Ian K. Bray, An Introduction to Requirements Engineering, Addison Wesley, 2002
- Ian F. Alexander, Richard Stevens, Writing better requirements, Addison-Wesley, 2002 for the topic of how to write requirements
- Elizabeth Hull, Ken Jackson, Jeremy Dick, Requirements Engineering, Springer-Verlag, 2004 for the topic of traceability and an introduction to the DOORS tool