	Code & No:	CS 312
	Credits:	3 (3,0,1)
Computer Organization	Pre-requisite:	MATH 111
		CS 210
	Co-requisite:	None
	Level:	6

Course Description:

This course introduces the students to the basics of computer organization: the internal structure and operation of a digital computer at the level of memory, registers, flow of control, and assembly language. This course has a theoretical and a practical component: computer organization will be studied at a theoretical level, and students will have the opportunity to practice their skills by studying the assembly language for a particular Reduced Instruction Set Computer.

Topics to be covered :

- 1) Introduction to computer organization
 - Organization and Architecture
 - <u>Computer components</u>
 - <u>Computer function</u>
 - Interconnection Structures
 - Bus Interconnection
- 2) Number Systems
 - Binary Numbers,
 - Decimal System
 - Binary System
 - Octal System
 - Converting between Binary and Decimal Hexadecimal Notation

3) Binary Arithmetic

- Integer arithmetic operations
- Logical operations
- Review of signed/unsigned integers
- 4) Floating Point representation
 - IEEE 754 standard
 - Normalized and de-normalized numbers

- <u>Rounding and accurate arithmetic</u>
- Floating point instructions
- 5) Instruction set Design
 - Instruction representation.
 - Addressing modes.
 - Instructions for making decisions
- 6) Assembly Language : Machine and Assembly language programming
 - <u>Assembly Language</u>
 - Assemblers
 - Assembler function and design
 - <u>x86 Microprocessor Assembly language programming</u>
- 7) Boolean Functions and Logic Gates
 - <u>Simplification of Boolean Function using K-map</u>
 - <u>Combinational Logic</u>
- 8) <u>Data-path</u>
 - Data-path components
 - <u>Single-cycle data-path</u>
 - Implementing a register file
- 9) Control signals and control unit
 - <u>ALU control</u>
 - Single-cycle delay analysis and clock cycle
 - <u>Multi-cycle instruction execution</u>
- 10) Memory organization
 - <u>SRAM</u>
 - DRAM
 - Latency and bandwidth
 - Memory hierarchy
 - <u>Cache memory</u>
- 11) Reduced Instruction Set Computers (RISC)
 - Instruction Execution Characteristics
 - Reduced Instruction Set Architecture,
 - RISC versus CISC Controversy.

Course Aims:

1. Explain the basic concept of computer and its structure.

- 2. Give overview of the components of computer system
- 3. Identify the number systems.
- 4. Understand and use different data representations
- 5. Design and analysis combinational circuits
- 6. Use the assembly language to write drivers for different computer accessories
- 7. Understand how the data-path and control unit operate inside a CPU

Student Outcomes (SOs):

 \boxtimes (a) An ability to apply knowledge of computing and mathematics appropriate to the program's student outcomes and to the discipline

 \boxtimes (b) An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution

 \boxtimes (c) An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs

 \Box (d) An ability to function effectively on teams to accomplish a common goal

(e) An understanding of professional, ethical, legal, security and social issues and responsibilities

 \Box (f) An ability to communicate effectively with a range of audiences

□(g) An ability to analyze the local and global impact of computing on individuals, organizations, and society

□(h) Recognition of the need for and an ability to engage in continuing professional development

⊠(i) An ability to use current techniques, skills, and tools necessary for computing practice.

□(j) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices. [CS]

□ (k) An ability to apply design and development principles in the construction of software systems of varying complexity. [CS]

□(j) An ability to use and apply current technical concepts and practices in the core information technologies of human computer interaction, information management, programming, networking, and web systems and technologies. [IT]

 \Box (k) An ability to identify and analyze user needs and take them into account in the selection, creation, evaluation, and administration of computer-based systems. [IT]

 \Box (I) An ability to effectively integrate IT-based solutions into the user environment. [IT]

 \Box (m) An understanding of best practices and standards and their application. [IT]

\Box (n) An ability to assist in the creation of an effective project plan. [IT]

Course Learning Outcomes (CLOs):

SOs and CLOs Mapping:

- 1. Identify the basic components of computer system and understand the specification of a PC.
- 2. Convert numbers from one number system to another number system and describe the details of integer and floating point formats.
- 3. Design logic circuits by applying the concepts of Boolean Algebra and K-Maps.
- 4. Apply Assembly Language Programming skills to solve problems.
- 5. Describe the Instruction Set Architecture and data path of a simple processor.
- 6. Describe the concepts of RISC / CISC machines and parallel programming.

CLO/PLO	а	b	С	d	е	f	g	h	i	j	k	I	m	n
CLO1	٧													
CLO2	٧													
CLO3			٧						٧					
CLO4		٧												
CLO5		٧							٧					
CLO6	٧													

No.	Topics	Weeks	Teaching hours
1	Introduction to Computer organization	2	6
2	Number Systems	1	3
3	Binary Arithmetic	1	3
4	Floating Point representation	1	3
5	Instruction set Design	1	3

	6	Assembly Language : Machine and Assembly language programming	2	6
-	7	Boolean Functions and Logic Gates	2	6
	8	<u>Data-path</u>	1	3
	9	Control signals and control unit	1	3
	10	Memory organization	1	3
	11	Reduced Instruction Set Computers (RISC)	1	3
		Total	14	42

Textbook:

• Computer Organization and Architecture: Designing for performance by William Stallings, Pearson, Global Edition, 2016

Essential references:

 The Essentials of Computer Organization and Architecture by Linda Null and Julia Lobor, Jones and Bartlett, 4th Edition, 2015.