	Code & No:	MATH 107
	Credits:	3(3,0,1)
Linear Algebra	Pre-requisite:	MATH 112
	Co-requisite:	None
	Level:	5

Course Description:

This course includes the following topics:

- 1. Introduction to Matrices: Matrices, Type of matrices, Operations of Matrices, echelon form and Normal form, Determinants and their properties, classical adjoint matrix, matrix inverses, matrix inverse using cofactor, powers of a matrix, Applications involving power of a matrices, Characteristic polynomial, Eigenvalues and eigenvectors, Diagonalization of a matrix, Vectors: their addition, subtraction, and multiplication by scalars (i.e. real numbers). Graphical interpretation of these vector operations Developing geometric insight. Inner products and norms in \mathbb{R}^n : inner products of vectors, norm of a vector, unit vectors. Applications of inner products in \mathbb{R}^n : lines, planes in \mathbb{R}^3 , and lines and hyperplanes in \mathbb{R}^n
- 2. System of Linear equations: System of linear equations, Gauss eliminations, inverse method, Cramer's rule
- **3.** Vector spaces: Vector spaces on \mathbb{R}^n , subspaces, Algebra of subspaces, Linear Span, Linear dependence and Independence, Bases and dimensions in \mathbb{R}^n , Orthogonal bases, Rank of a matrix Range, nullity of a matrix, fundamental theorem of linear algebra
- **4.** Linear transformations: Linear Transformation, Kernel and Range of a linear transformation, Null space, Coordinates change, Change of basis and similarity

Course Aims:

- a) To understand the concepts of matrices and some operations, eigenvalues and eigenvectors, the concepts of vectors in \mathbf{R}^n
- b) To develop the skills to Solve systems of linear equations using Gauss Elimination, Cramer's rule and inverse matrix method
- c) To understand the concepts of vector spaces, subspaces, linear dependence and independence, bases and linear transformations, Rank and nullity of a matrices, fundamental theorem of linear algebra
- d) To get the knowledge of linear transformations and some of its applications

Student Outcomes (SOs):

 \boxtimes (a) An ability to apply knowledge of computing and mathematics appropriate to the program's student outcomes and to the discipline

⊠(b) An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution

 \Box (c) An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs

 \Box (d) An ability to function effectively on teams to accomplish a common goal

(e) An understanding of professional, ethical, legal, security and social issues and responsibilities

 \Box (f) An ability to communicate effectively with a range of audiences

□(g) An ability to analyze the local and global impact of computing on individuals, organizations, and society

□(h) Recognition of the need for and an ability to engage in continuing professional development

⊠(i) An ability to use current techniques, skills, and tools necessary for computing practice.

□(j) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices. [CS]

□(k) An ability to apply design and development principles in the construction of software systems of varying complexity. [CS]

□(j) An ability to use and apply current technical concepts and practices in the core information technologies of human computer interaction, information management, programming, networking, and web systems and technologies. [IT]

 \Box (k) An ability to identify and analyze user needs and take them into account in the selection, creation, evaluation, and administration of computer-based systems. [IT]

 \Box (I) An ability to effectively integrate IT-based solutions into the user environment. [IT]

 \Box (m) An understanding of best practices and standards and their application. [IT]

 \Box (n) An ability to assist in the creation of an effective project plan. [IT]

Course Learning Outcomes (CLOs):

Upon successful completion of the course, students should be able to:

 To understand the concepts of matrices and some operations, eigenvalues and eigenvectors, the concepts of vectors in *Rⁿ*

- 2. To develop the skills to Solve systems of linear equations using Gauss Elimination, Cramer's rule and inverse matrix method
- 3. To understand the concepts of vector spaces, subspaces, linear dependence and independence, bases and linear transformations, Rank and nullity of a matrices, fundamental theorem of linear algebra
- 4. To get the knowledge of linear transformations and some of its applications

SOs and CLOs Mapping:

CLO/SO	а	b	С	d	е	f	g	h	i	j	k	I	m	n
CLO1	٧	٧							٧					
CLO2	٧	٧							٧					
CLO3	٧	٧							٧					
CLO4	٧	٧							٧					

No.	Topics	Weeks	Teaching
1	Introduction to Matrices: Matrices, Type of matrices, Operations of Matrices, echelon form and Normal form, Determinants and their properties, classical adjoint matrix, matrix inverses, matrix inverse using cofactor, powers of a matrix, Applications involving power of a matrices, Characteristic polynomial, Eigenvalues and eigenvectors, Diagonalization of a matrix, Vectors: their addition, subtraction, and multiplication by scalars (i.e. real numbers). Graphical interpretation of these vector operations Developing geometric insight. Inner products and norms in \mathbb{R}^n : inner products of vectors, norm of a vector, unit vectors. Applications of inner products in \mathbb{R}^n : lines, planes in \mathbb{R}^3 , and lines and hyperplanes in \mathbb{R}^n	5	15
2	System of Linear equations: System of linear equations , Gauss eliminations, inverse method, Cramer's rule	2	6
3	Vector spaces : Vector spaces, subspaces, Algebra of subspaces, Linear Span, Linear dependence and Independence, Bases and dimensions in R ⁿ ,	4	12

	Orthogonal bases, Rank of a matrix, Range, nullity of a matrix, fundamental theorem of linear algebra		
4	Linear transformations: Linear Transformation, Kernel and Range of a linear transformation, Null space, Coordinates change, Change of basis and similarity	3	9
	Total	14	42

Textbook:

• Linear Algebra with Applications byJones and Bartlett, Publisher: Gareth Williams, Eighth Edition, 2014

Essential references:

- Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons, 2008
- Linear Algebra by Seymour Lipchitz and Marc Lipson, Schaum's Outlines, Fifth Edition, 2013
- Linear Algebra, and Its Applications by David C. Lay, Publisher: Pearson, Fifth Edition, 2015
- Linear Algebra, with Application by W. Keith Nicholson, Publisher: McGraw-Hill , Sixth Edition, 2009
- Linear Algebra: A Modern Introduction by D. Poole, Publisher: Brooks Cole, Third Edition, 2011