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Abstract
Hybrid optimization techniques have been extensively utilized for solving optimal power flow 
problems in distribution systems integrated with or without renewable energy systems, with load 
uncertainty. Particle swarm optimization (PSO) is integrated with Gray wolf optimizer (GWO) to 
create a hybrid algorithm, HPSOGWO. HPSOGWO is implemented to augment the optimal power 
flow solutions of IEEE-30 bus and IEEE-62 bus systems. Five objective functions are considered to 
investigate the power quality of the hybrid algorithm. The proposed algorithm strength is justified 
by a comparative study with each individual algorithm. The suggested algorithms provide different 
accuracy results in small and large scale distributed systems, which indicates their drawbacks in 
certain systems. The system is solved using MATLAB.
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1. Introduction

Recently, several modern optimization 
techniques have been improved. The joint 
objective of these techniques is the detec-
tion of the most optimal solution and con-
vergence performance. Hence, every algo-
rithm inspired by nature must be contained 
from exploration and exploitation to guar-
antee the best global solution.
Exploration involves a search method to 
obtain a better solution in a large area, 
which is a global search. When searching 
for a solution via the method, it is the most 
suitable to utilize exploitation because it 

impacts a small area, and it is a local search. 
Eventually, all modern techniques strive to 
achieve an equilibrium between the capac-
ity to explore and exploit the situation to 
search the most appropriate solution and 
performance in the search space [1].
Particle swarm optimization (PSO) has 
been implemented for nonlinear optimi-
zation issues such as a stochastic method. 
Kennedy and Eberhart reported that PSO 
essentially simulates social behavior [2,3]. 
Due to its convergence speed, reliability, 
simplicity, and capacity to pinpoint glob-
al and optimal solutions, PSO is the best 
option. 
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Recently, Mirjalili et al. developed anoth-
er method known as grey wolf optimizer 
(GWO), which has been created as per the 
hunting method and hierarchy exhibited 
by grey wolves [4]. GWO has been success-
fully implemented to optimize key metrics 
from coding algorithms [10]. In addition, 
GWO can be employed for solving opti-
mizing key values in feature subset selec-
tion [11], time forecasting [12], optimum pow-
er flow issues [13], economic dispatch issues 
[14], flow-shop scheduling issues [15], and an 
optimal double-layer grid design [16]. Sev-
eral algorithms were created to augment 
the convergence performance of GWO, 
e.g., parallelized GWO [17, 18], binary GWO 

[19], integration of DE with GWO [20], hybrid 
GWO with genetic algorithm (GA) [21], hy-
brid DE with GWO[22], and hybrid GWO 
using the elite opposition-based learning 
strategy and simplex method[23].
The no-free lunch theorem[24] for optimiza-
tion permits researchers to search or devel-
op fresh algorithms and augment the qual-
ity of the existing ones, indicative of the 
lack of a single technique that can address 
all issues. 
In addition to PSO, several hybrids exist, 
such as the particle swarm optimization 
with gravitational search algorithm (PSO-
GASE)[5,6], particle swarm optimization 
with dragonfly algorithm (PSODA) [7], 
particle swarm optimization with firefly 
algorithm (PSOFA)[8], and particle swarm 
optimization with multi-verse optimizer 
(PSOMVO)[9].
Port-Hamiltonian algorithm was imple-
mented for optimizing the power flow of 

multi-terminal DC networks. The tech-
nique is utilized for offshore wind inte-
gration grid in the North Sea and the in-
terconnection with the network dynamic is 
examined using numerical simulations[25]. 
Moth swarm algorithm incorporated with 
gravitational search algorithm for optimal 
power flow considering the wind energy 
system. The technique is tested with IEEE 
30-bus, IEEE 57-bus, and IEEE 118-bus 
integrated with and without wind energy 
system. The results approved the efficien-
cy and accuracy of the techniques [26].   
An interline current flow controller (CFC) 
is utilized for decreasing the operating cost 
of hybrid AC/DC, mesh grids using elimi-
nation the congestion within the DC lines. 
The technique is implemented in a case 
studies of 5-terminal AC/DC meshed grid. 
This leads to improving the optimal power 
flow of the studied system, considering the 
load uncertainty and different configura-
tion of the transmission system [27]

Hybrid modified imperialist competitive 
algorithm with sequential quadratic pro-
gramming is employed to solve the con-
strained of the optimal power flow prob-
lem of hybrid power system integrated 
with renewable energy system. The tech-
niques suggested is evaluated and tested 
using three benchmark systems which are 
IEEE 30-bus, IEEE 57-bus  and IEEE 118-
bus power systems integrated with few PV 
system and wind energy system[28].  
The solution of optimal power flow prob-
lem of distribution systems using decen-
tralized saddle-point dynamics [29]. 
In this study, a new hybrid (HPSOGWO) 
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that uses both PSO and GWO is examined. 
The following five functions are included: 
1. Minimization of Active Power Trans-
mission Loss 
2. Minimization of Fuel Costs related to 
Generation 
3. Maximization of Margin for Reaction 
Power Reserve 
4. Minimization of Reactive Power Trans-
mission Loss 
5. Minimization of Emission Index 

2. Problem Formulation

2.1. General OPF Problem Formulation

The mathematical formula of the OPF 
problem is as follows:

Several control variables for this problem 
are defined as follows:

where
u = control variables
QC = reactive power supplied by all shunt 
reactors
TC = magnitude of transformer load tap 
changer 
VG = magnitude of voltage at generator 
buses 
PG = active power generated at generator 
buses

where
x = state variables
VL = magnitude of voltage at load buses
θ = voltage angles of all buses excluding 
the slack bus”
PSG = active power generated at the slack 
bus
QG = reactive power generated at all gen-
erator units
NL = number of load buses
NG = number of generator buses

The OPF problem, i.e., the optimization 
problem, is outlined as maximizing or min-
imizing the objective function, where the 
problem is put through a series of equality 
and inequality restrictions.

3.Problem Objectives

3.1.Fuel Cost Minimization

The economic distribution of a load is de-
fined among the different generators of a 
system, and the variable operating costs 
must be presented as the active power 
generated at each generator in a system. 
Hence, the fuel cost is the essential cost 
in a thermal or nuclear unit. Then, the fuel 
cost must be presented as active power 
generated at each generator in a system. In 
addition, other costs, such as operation and 
maintenance costs, can be presented as the 
power output. Fixed costs such as the cap-
ital cost, depreciation, etc. are not included 
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in the fuel cost.
The curve for fuel cost is thought to be 
estimated by the quadric function of the 
active power generated by each unit in a 
system as follows: 

where
PGi = active power generated at an ith gen-
erator in a system   
 NG= number of generators in a system
ai,bi,ci = fuel cost coefficients of an ith gen-
erator in a system.

 Fig. 1. Generated fuel cost minimization for a 30-bus
IEEE system

3.2. Emission Minimization

The function of emissions can be summa-
rized as all types of the considered emis-
sions, such as NOx, SO2, and thermal emis-
sions. As shown in the equation, emissions 
in terms of their amount are highlighted as 
the function of the active power, which is 
generated at each generator in a system, 
and it is expressed as the sum of quadratic 

and exponential functions:

where
αi,βi,γi,λi and ϵi  are the emission character-
istic coefficients of the ith generator.

3.3 Total Active Power Loss Minimization

The term PL represents the total I2R loss 
in the transmission lines and transformers 
of the system. From equation (3), the to-
tal active power loss equals the sum of the 
generated active power at each generator 
in a system subtracted by the sum of the 
active power at each load bus in a system; 
hence, PLoss must be greater than zero.”

3.4 Reactive Power Transmission Loss 
Minimization

This resulted in the increase in the volt-
age stability margin and augmentation of 
the transportation system from real power 
out of sources to sinks in a network, and 
QLoss can be either positive or negative.
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1.1. Reactive Power Reserve Margin 
Maximization

Reactive power reserve margin maximi-
zation leads to the minimization of the re-
active power losses and improvement of 
the voltage stability and the generator’s 
capacity to aid the bus voltage under aug-
mented system disturbances or load con-
ditions. The speedy sources (reactive) in-
clude FACTs, generators, and synchronous 
condensers.

4. Problem Constraints

4.1. Equality constraints

The equality constraint condition can be 
expressed as follows:

4.2. Inequality constraints

• Constraints of generation capacity

The generator outputs and bus voltage are 
restricted by min and max limits as fol-
lows:

• Constraints of line flow

Where,PLf,k is the active power flow of line 
k,             is the active power flow high limit 
of line k, and L is the number of transmis-
sion lines.

5. Optimization Techniques

The mathematical model for each optimi-
zation technique is explained in this sec-
tion.

5.1. Particle Swarm Optimization (PSO)

In 1995, Kennedy and Eberhart proposed 
PSO [2,3], which is inspired by the social be-
havior of different animals, birds, and in-
sects. PSO looked at elements such as the 
schooling of fish or flocking of birds. 
The word particle is concerned with a sin-
gle unit, i.e., a bird in a swarm or a bee 
from a colony. Each piece comes together 
with its own intelligence into a collective, 
building a group or the hive mind. 
When one particle or unit locates a path to 
food, others will swarm and instantly fol-
low even if they are located far from the 
swarm. This is based on hive intelligence, 
which is a technique that stems more from 
behavior than genetics, where algorithms 
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are known as evolution-based processes.  
It is where a population of the unit or par-
ticles are put into use to solve optimization 
issues. Each exhibits two essential charac-
teristics: velocity and position. 
The particles are present in the search 
space, and they can be in the best possible 
spot when examined in terms of the objec-
tive function. The particles can be updat-
ed to a better position, and their velocities 
are estimated by equations 9 and 10. This 
perspective is gained from hive or swarm 
behavior to augment global optimization 
function solutions [30]. 

These mathematical equations are as 
follows:

where N represents the population size, 
and dimension D is presented as
 X=[X1,X2,…,XN]T, where T is a transpose 
operator. Each particle is presented as
 Xi = (I = 1,2,….,N) is presented as
X=[I,Ii,2,….,I] ]. In addition, the initial 
velocity of the population is indicated as 
V=[V1,V2,…,VN]T.Thus, the velocity of 
each particle in a population 
Xi(i = 1,2,..., N) is presented as 
V = [Vi,1,Vi,2,…,Vi,D]. The index i mutates 

from 1 to N, whereas the index j mutates 
from 1 to D.”

5.2 Grey Wolf Optimizer (GWO)

Mirjalili et al. were the first to develop 
the GWO algorithm, which is essentially 
inspired by the leadership hierarchy and 
hunting methods of grey wolves [4]. The 
wolves in question are thought to be at the 
top of the food chain and live as a collec-
tive. 
The study examined four species, includ-
ing (α), beta (β), delta (δ), and omega (ω), 
respectively, in terms of the simulation 
patterns of the leadership hierarchy and 
basic GWO parameters. 

In terms of the GWO design, as per the hi-
erarchy of the wolves, alpha (a) is desig-
nated as the best solution. The second and 
third best solutions are designated as beta 
(β) and delta (δ), respectively. The remain-
ing candidate solutions are designated as 
(ω). The WHO algorithm simulates the 
behavior of the wolves during hunting in 
three stages: chasing, hunting, and tracking 
the prey, in addition to attacking the target. 
This behavior is considered during the de-
sign of GWO, which can be expressed as 
follows:

where (t) is the present iteration, Xp is the 
prey position vector, D, A, and C are coef-
ficient vectors, and X is the GWO vector. 
A and C are calculated as follows:
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The hunting behavior of the grey wolves is 
simulated assuming that alpha (α), beta (β), 
and delta (δ) have enhanced knowledge of 
the prey site that is likely to be targeted, 
which can be explained as follows:

At |A| < 1, the wolves are forced to at-
tack the prey, where A is a random value. 
Searching for the prey is the exploration 
ability, while attacking the prey is the ex-
ploitation ability. At |A| > 1, the wolves are 
forced to diverge from the prey.

6. A New Hybrid Algorithm

Several hybridization techniques for heu-
ristic techniques. Talbi [31-32] reported the 
hybridization of two or more techniques. 
HPSOGWO is the combination of GWO 
and PSO, where the strengths of both 
techniques are put into place during ex-
ploration when the Pbest value of PSO is 
switched with that of GWO. In terms of 
HPSOGWO, the position of the first three 
agents is updated in the equation for the 
search space (15), with an additional iner-
tia constant (ω) to control the exploration 
and exploration within the search space. 

The equation that results from this modifi-
cation is expressed as follows: 

where ω denotes the inertia weight. For 
combining PSO and GWO, the updated 
equation and velocity can be expressed as 
follows:

Basic steps of HPSOGWO

STEP 1: Create an initial population 
(agents) or (grey wolves).

STEP 2: Initialize a, A, C, and ω equations 
(8, 13, 14).

STEP 3: Perform fitness evaluation of each 
agent.
STEP 4: Calculate the position of the grey 
wolf. Xα, Xβ, and Xδ equations (20) and 
(16–18).

STEP 5: Update the velocity and position 
equations (21, 22).

STEP 6: Repeat STEPS 2–5 until the stop 
criteria is reached.

STEP 7: Stop.
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7. Results and Discussion

Figure 3 and Figure 4 show the results for 
the 30-bus 6-generator and 62-bus 19-gen-
erator IEEE systems, respectively. The to-
tal active power demands for the 30-bus 
and 62-bus systems are 283.4 MW and 
2,912 MW, respectively, and their corre-
sponding total reactive power demands are 
126.2 MVar  and 1,269 MVar. Five OPFs 
are individually implemented as one ob-
jective function during the process optimi-
zation by using PSO, GWO, and HPSOG-
WO and compared (Table I and Table II):
F1 Fuel Cost Minimization 
F2 Emission Minimization 
F3 Total Active Power Loss Minimization
F4 Reactive Power Transmission Loss 
Minimization
F5 Reactive Power Reserve Margin 
Maximization

 Table 1. Values of the Five Functions (OPFs) by PSO,
GWO, and HPSOGWO for a 30-bus IEEE System

 Table 2. Values of the Five Functions (OPFs) by PSO,
GWO, and HPSOGWO for a 62-bus IEEE System

 Fig. 2. Emission index minimization for a 30-bus IEEE
system

 Fig. 3. Active power loss minimization for 30-bus IEEE
system

Table 1 summarizes the best optimal solu-
tions, convergence performance, and best 
statistical values achieved by HPSOGWO 
for five function values. The performances 
of GWO and PSO are satisfactory, but nei-
ther can match up to that of HPSOGWO: 
“HPSOGWO is more reliable in providing 
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superior quality results with reasonable it-
erations and prevents the premature con-
vergence of the search process to a local 
optimal point and provides superior explo-
ration of the search course.”
Table II summarizes the best optimal solu-
tions, convergence performance, and best 
statistical values achieved by PSO for five 
function values. The performances of HP-
SOGWO and GWO are the same, GWO 
only exhibits the best optimal solution for 
the maximization of reactive power reserve 
margin, and HPSOGWO only exhibits the 
best optimal solution for the minimization 
of emissions. 

Table 3. Standard Values of All the Used Algorithms

 Fig. 5. Reactive power reserve margin maximization
“for 30-bus IEEE system

 Fig. 6. Generation fuel cost minimization for a 62-bus
IEEE system

 Fig. 7. Emission index minimization for a a62-bus
IEEE system

 Fig. 4. Reactive power loss minimization for a 30-bus
IEEE system
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8. Conclusions

The hybrid optimization technique com-
prising two algorithms, i.e., PSO and 
GWO, respectively, was outlined in this 
study for different scenarios. The quali-
ty of this technique was examined using 
two 30-bus [33] and 62-bus IEEE systems 
[34] with different cases.  Five objective 
functions were considered to investigate 
whether the proposed algorithm was of a 
desired quality. Furthermore, the hybrid 
algorithm was compared with PSO and 
GWO. Results revealed that compared to 

 Fig. 8. Active power loss minimization for a 62-bus
IEEE system

 Fig. 10. Reactive power reserve margin maximization
for a 62-bus IEEE system

Fig. 11. Single-line diagram of a 30-bus IEEE test
system 

GWO, PSO and HPSOGWO afford better 
results by a low number of iterations and 
high-quality solutions. The suggested hy-
brid algorithms mostly provide very good 
results and high accuracy but not in all 
cases, due to nature of each optimization 
algorithm
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