

Course Specifications

23 / 12 / 1435 H

Institution: Majmaah University. College of Science at AzZulfi. Academic Department : Programme: **Computer Science and Information** Course : Distributed System & Parallel Processing(CSI-421) **Course Coordinator :** Ms. ISSA ALSMADI Programme Coordinator : DR.YOSRY AZAAM Course Specification Approved Date :

This form compatible with NCAAA 2013 Edition

A. Course Identification and General Information

1 - Course title : Distributed Sys Parallel Process	tem & ing	Course Code:	(CSI-421)	
2. Credit hours : (2 lecture	+ 2 Laborat	ory)		
3 - Program(s) in which the cour	rse is offere	ed: Computer Informatio	Science and n Program	
4 – Course Language : ENGLI	SH			
5 - Name of faculty member res	ponsible fo	or the course:	ISSA ALSMADI	
6 - Level/year at which this cour	rse is offere	ed : 8 th Level		
7 - Pre-requisites for this course	(if any) :			
• Design & Analysis of Algorit	hms CSI 32	1		
8 - Co-requisites for this course (if any) :				
N/A				
9 - Location if not on main campus:				
College of Science at AzZulf				
10 - Mode of Instruction (mark	<u>all th</u> at app	ly)	h	
A - Traditional classroom	Wh	at percentage?	80 %	
B - Blended (traditional and online)	Wh	at percentage?	5 %	
D - e-learning	Wh	at percentage?	5 %	
E - Correspondence	Wh	at percentage?	%	
F - Other	Wh	at percentage?	10 %	
Comments :				
One-tenth of the course is presented mainly inside video lectures of other instructors worldwide. They illustrate the same topics that I introduced in my lectures with a				

B. Objectives

different presentation.

What is the main purpose for this course?

The objective of this course is to introduce students to the fundamentals and techniques of distributed computing and provide them with the basic skills of how to write distributed programs. Topics to be covered include: distributed computing, distributed programming, distributed systems, concurrency, distributed computing paradigms, inter-process communications, group communications, operating system support, distributed objects, application programming interfaces (RMI, RPC), client server model, the socket API, security issues and Internet applications.

In this course also, student will study an introduction to parallel processing. Models of parallel machines. Parallel programming paradigms and models. Performance analysis of parallel systems.

Parallel programming languages and frameworks. Students are expected to develop distributed applications using latest technologies.

Briefly describe any plans for developing and improving the course that are being implemented:

- 1. Using group discussion.
- 2. Updating the materials of the course tocover the new topics of the field.

C. Course Description

1. Topics to be Covered

	List of Topics	No. of Weeks	Contact Hours
1.	Introduction The concept of parallel computers and programming, Extension of a single processor system into a shared memory multiprocessor, The message-passing multiprocessor (multicomputer), Static interconnection networks suitable for message-passing multicomputer.	2	8
2.	Message Passing Computing -MPI and PVM: Process creation and basic message-passing techniques, Software tools for harnessing a network of workstations, Modeling communication, Communication latency and latency hiding, Time complexity of parallel algorithms.	3	12
3.	Performance Measures - Analysis of Parallel Programs:	1	4
4.	Embarrassingly Parallel Computations-Simple Data Partitioning: an (ideal) embarrassingly parallel computation 'Embarrassingly parallel problems and analyses, Partitioning a two-dimensional data set, Work pool approach to achieve load balancing, Counter termination algorithm.	2	8
5.	Divide-and-Conquer - Pipelined Computations Partitioning and divide-and-conquer concepts as the basis for parallel computing techniques. Tree constructions.	1	4
6.	Scheduling and Load Balancing - Synchronous Computations :The concept of a barrier and its implementations (global barriers and local barriers), Data parallel computations, The concept of synchronous iteration, Examples of using global and local barriers.	2	8
7.	Shared Memory Programming - Sorting Algorithms : Rank sort, Bubble sort, Odd-even transposition sort, Shear sort, Merge sort, Quicksort, including on a hypercube, Odd-even merge sort,	2	8

	Bitonic merge sort.		
8.	Numerical Algorithms - Image Processing : Different parallel		
	implementations of matrix multiplication (direct, recursive, mesh),		
	Solving a system of linear equations using Gaussian elimination, Basic	2	8
	low level preprocessing operations (thresholding, contrast stretching,		
	histograms, smoothing, sharpening, noise reduction.		

2. Course components (total contact hours and credits per semester):

	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	30	30	-	-	-	60
Credit	30	15	-	-	-	45

3. Additional private study/learning hours expected for students per week.

5 Hours

The total workload of the student in this course is then: 60 + 5x = 135 work hours.

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
1.0	Knowledge		
1.1	Understand the fundamental aspects of parallel and	Lectures.	Written Exam
	distributed processing, taxonomies of parallel	Lab	Homework
	systems, and performance measures for parallel	demonstrations.	assignments
	systems.	Case studies.	Lab assignments

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
1.2	Understand the theoretical limitations of parallel computing such as intractability.	Individual presentations.	Class Activities Ouizzes
		P	
2.0			
2.0	Cognitive Skills	.	
2.1	Design, implement, develop and evaluate efficient	Lectures.	Written Exam
	parallel application programs.		Homework
2.2	Apply the common sort algorithms techniques on	demonstrations.	assignments
	data structures types using the MPI.	Case studies.	Lab assignments
		nasontations	Class Activities
		Brainstorming	Quizzes
30	Internersonal Skills & Responsibility	Dramstorning.	
3.0	Learn how to search for information through library	Small group	Written Exam
5.1	and internet and Present a short report in a written	discussions	Homework
	form and orally using appropriate scientific	Whole group	assignments
	language.	discussions.	Lab assignments
		Brainstorming.	Class Activities
		Presentations.	Quizzes
4.0	Communication, Information Technology, Numer	ical	
4.1	Function effectively on teams to accomplish a	Small group	Written Exam
	common goal, and ccommunicate with teacher, ask	discussions.	Homework
	questions, solve problems, and use computers.	Whole group	assignments
		discussions.	Lab assignments
		Brainstorming.	Class Activities
		Presentations.	Quizzes
5.0	Psychomotor		
5.1	N/A		

5. Schedule of Assessment Tasks for Students During the Semester:

	Assessment task	Week Due	Proportion of Total Assessment
1	First written mid-term exam	6	15%
2	Second written mid-term exam	12	15%
3	Presentation, class activities, and group discussion	Every week	5%
4	Homework assignments	After Every chapter	5%
5	Practical exam	15	20%
6	Final written exam	16	40%
7	Total		100%

D. Student Academic Counseling and Support

Office hours: Sun: 8-10, Mon. 8-10, Tus. 1-3. Office call: Mon. 12-1 and Tus 12-1

Email: i.alsmadi@mu.edu.sa

E. Learning Resources

0
1.List Required Textbooks :
Distributed Systems: Concepts and Design (5th Edition) Hardcover – May 7, 2011
by George Coulouris, Jean Dollimore, Tim indberg, Gordon Blair.
ISBN-13: 978-0132143011

2. List Essential References Materials :

- Distributed Systems: Principles and Paradigms (2nd Edition) by Andrew S. Tanenbaum and Maarten Van Steen (Oct 12, 2006).
- 3. List Recommended Textbooks and Reference Material : $N\!/\!A$
- 4. List Electronic Materials :

Determines as the course is going on.

5. Other learning material :

Videos and presentations are available with the instructor.

F. Facilities Required

1. Accommodation

Classrooms and Labs available at College of science in Zulfi

2. Computing resources

Smart Board.

3.Otherresources

N/A.

G. Course Evaluation and Improvement Processes

- **1** Strategies for Obtaining Student Feedback on Effectiveness of Teaching:
- Analysis of students' results.
- Observation during work.
- Students' evaluations.
- Colleagues' evaluations.
- Evaluation questionnaire filled by the students.
- Interview a sample of students enrolled in the course to take their opinions.
- 2 Other Strategies for Evaluation of Teaching by the Program/Department Instructor :
- Self-assessment.
- External evaluation.
- Periodic review of course (the Commission of study plans).
- **3** Processes for Improvement of Teaching :
- Taking into account the recommendations yielded from the internal review of the course.
- Guidelines about course teaching provided by the by study plans commission.
- Department Guidelines about faculty member performance on the basis of direct observation.
- Training and development.
- Workshops to improve the educational process.

• Reviewing the final exam questions and a sample of the answers of the students by others.

د ام ی ف المدمعة

- Visiting the other institutions that introduce the same course one time per semester.
- Watching the videos of other courses by international institutions.
- **5** Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement :
- Comparison of the course to its counterparts offered in similar departments.
- Periodic revision of course description by faculty member.
- Periodic revision of course description by the study plans and schedules Commission.
- Update learning resources related to the course to ensure that the course is kept up with developments in the field.
- Make use of statistical results of course evaluation made by students to improve and develop the course.
- Giving the opportunity for students to express their opinions about what is taught and receive suggestions and study their effectiveness.

Course Specification Approved Department Official Meeting No (6) Date 23 / 12 / 1435*H*

Course's Coordinator

Name :	Mr. ISSA ALSMADI
Signature :	
Date :	23 / 12 / 1435 <i>H</i>

Department Head

Name :	Dr YossryAzzam
Signature :	
Date :	/ / H

