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1.	 Introduction
The restricted problem is studied by many 

scientists and mathematicians in the two-body, three-
body, four-body and N-body models. Chernikov 
[8] investigated the stability of equilibrium points 
by Lyapunov’s methods in the restricted three body 
problem (Sun-Planet-Particle) with the effects of 
solar radiation pressure. Perezhogin [17] studied 
the stability of the sixth and seventh libration points 
in the photogravitational circular restricted three 
body problem. Bhatnagar et al. [7] studied about the 
lagrangian points in the photogravitational restricted 
three body problem. They examined the stability of the 
equilibrium points and observed that the equilibrium 
points are stable in the linear sense and unstable 
around the triangular points. Mignard [14] studied the 
restricted three-body problem with the inclusion of 
solar radiation pressure. And observed that triangular 
equilibrium points are no longer exist. Simmons 
[20] investigated the restricted 3-body problem with 
radiation pressure and observed that nine equilibrium 
points exists, five in the plane of motion and four in the 
out of plane. Sharma [19] investigated the variation of 
the solar radiation pressure and oblateness factor on the 
stationary solutions of the planar restricted three-body 
problem when the more massive primary is a source 
of radiation and smaller primary is an oblate spheroid 
with its equatorial plane coincident with the plane 
of motion.  AbdulRaheem et al. [4] investigated the 
stability of equilibrium points under the influence of the 
Coriolis and centrifugal forces together with the effects 
of oblateness and radiation pressure of the primaries. 
It is observed that the collinear points are unstable 
and the triangular points are conditionally stable 

depending on the radiation factor and oblateness. It is 
also observed that the Coriolis force has a stabilizing 
tendency, while the centrifugal force, radiation and 
oblateness of the primaries have destabilizing effects. 
Kalvouridis, et al. [10] investigated the dynamical 
properties and the parametric evolution of periodic 
orbits in the restricted four body problem with radiation 
pressure. They illustrated the zero-velocity curves and 
surfaces and also they examined the stability of the 
equilibrium points. Abouelmagd [2] investigated the 
stability and periodic orbits in the restricted three body 
problem under the effects of oblateness and radiation 
pressure. He observed that the collinear points are 
unstable while triangular points are conditionally 
stable depending on the radiation pressure and 
oblateness. And also the elements of periodic orbits 
around equilibrium points are affected by oblateness. 
Singh, et al. [25] studied numerically the restricted 
four-body problem by considering all the primaries as 
source of radiation pressure, placed at the vertices of an 
equilateral triangle. They observed that the equilibrium 
points are unstable. Pushparaj, et al. [18] studied the 
interior resonance periodic orbits around the Sun in the 
photogravitational restricted three body problem by the 
method of Poincare surface of section. They observed 
that the period of time decrease with the increase of 
radiation pressure.

Many researchers have explored about the 
variable masses and the Newton-Raphson basins of 
attraction as Meshcherskii [13], Lichtenegger[12] 
Singh [21, 22, 23, 24], Douskos [9], Zhang [26], 
Kumari [11], Assis [5], Abouelmagd [3], Mittal [15], 
Zotos [27, 28, 29, 30].  
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We have studied the circular restricted four-
body problem in which the masses of the primaries as 
well as the mass of the infinitesimal body vary with 
time and one of the primaries is taken as source of 
radiation pressure. We have discussed our problem in 
various sections. In the first section, we have reviewed 
the literature. In the second section, we have derived 
the equations of motion of the infinitesimal variable 
mass under the effects of the radiation pressure. In 
the third section, we have illustrated the numerical 
analysis (equilibrium points, time series, surface of 
motion of the infinitesimal body, Poincare surface of 
section and Newton-Raphson basin of attraction). In 
the fourth section, we have examined the stability of 
the equilibrium points. Finally, in the fifth section, we 
have concluded the problem. Our problem has great 
applications in the Astronomy and Astrophysics. 

2.	 Equations of motion

Let m1, m2 and m3 be the masses of the three 
primaries, placed at the vertices of an equilateral 
triangle of side  . The fourth infinitesimal body having 
mass m, moving under the influence of the primaries 
but not influencing them. The one of the primaries as 
m2 is considered as source of radiation pressure with 
factor q and all the masses are varying with time. The 
primaries are revolving in the circular orbits around 
their center of mass which is considered as origin. The 
primary m1 is placed at x-axis, the line passing through 
the origin and perpendicular to the x-axis, is taken as
y -axis and the line passing through the origin and 

perpendicular to the plane of motion of the primaries 
is taken as z-axis (Fig. 1). Initially, we supposed that 
the synodic plane coincides with the inertial plane and 
revolving with mean motion w about z-axis. Using the 
procedure of Abdullah [1], we can write the equations 
of motion of the variable infinitesimal body in the 
restricted four body problem as

Fig. 1: Configuration of the circular restricted four-body 
problem with solar radiation pressure at B.
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 where,

 2 2 2 2(x x ) ( ) , (i 1, 2,3),i i ir y y z= − + − + = are
 the distances from the primaries to the infinitesimal
 body, G is the gravitational constant.
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 where k 0 10 20 30 0, , , , , , ,ma b c µ µ µ µ are constants.

 Considering unit of mass, distance and time at initial
time t0 such that

 0 0 0 11, 1, 1, 1,a (constant)G t bµ w a= = = = + =

Introducing the mass parameter as 

10 20 2 30 2 2, (1 ), , 1,µ µ µ µ a µ µ a µ a= = − − = �<<1,
Finally, the equations of motion become

1'' 2 ' ' ,ξξ h a ξ− − = Ω

1'' 2 ' ' ,hh ξ ah+ − = Ω

1'' ' .ζζ a ζ− = Ω                                       (1)

where,
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Prime (‘) is the differentiation w.r.t. τ .

3.	 Numerical Analysis

3.1 Equilibrium points

The equilibrium points can found by taking

'' ' '' ' '' ' 0ξ ξ h h ζ ζ= = = = = = in equation (1),  
i.e.
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We have shown the equilibrium points graphically 

in ( , )ξ h plane (Fig. 2), ( , )ξ ζ  plane (Fig. 3) and 

( , )h ζ  plane (Fig. 4). In the ( , )ξ h plane, we found 
five equilibrium points. The green dots denote the 
locations of the equilibrium points and the purple dots 
denote the locations of the primaries. But Baltagiannis 
[6] have gotten ten equilibrium points with unequal 

masses in the classical case. In the ( , )ξ ζ  plane, we 
found five equilibrium points. The green dots denote 

the locations of the equilibrium points. In the  ( , )h ζ  
plane, we found three equilibrium points. The black 
dots denote the locations of the equilibrium points.
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 Fig. 2: Locations of equilibrium points at

1 20.2, 0.4, 0.01, 0.019, 0.8.k qa a µ= = = = =

Fig. 3. Locations of equilibrium points at 

1 20.2, 0.4, 0.01, 0.019, 0.8.k qa a µ= = = = =

  

 Fig. 4. Locations of equilibrium points at

1 20.2, 0.4, 0.01, 0.019, 0.8.k qa a µ= = = = =

3.2 Time series

We have plotted the time series in between ( , )τ ξ  

(Fig. 5.) and ( , )τ h (Fig. 6). These time series show that 
the orbits will not be periodic.  

  Fig. 5. Time series in between ( , )τ ξ   at

1 20.2, 0.4, 0.01, 0.019, 0.8.k qa a µ= = = = =
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Fig. 6. Time series in between ( , )τ h   at

1 20.2, 0.4, 0.01, 0.019, 0.8.k qa a µ= = = = =

3.3 Surfaces 

i.Surfaces of the motion of the infinitesimal body

In this section, we have drawn the surface of 
motion of the infinitesimal body by considering the 
equations (2 and 3) (Fig. 7), the equations (2 and 4) 
(Fig. 8), the equations (3 and 4) (Fig. 9).

Fig. 7. The surface of motion of the infinitesimal body in

( , , 0)ξ h ζ = -plane

Fig. 8. The surface of motion of the infinitesimal body in

( , 0, )ξ h ζ= -plane

Fig. 9. The surface of motion of the infinitesimal body in

( 0, , )ξ h ζ= -plane
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ii. Poincare surface of section

We have drawn the Poincare surface of section 
and got a discrete type of graph (Fig. 10). 

Fig. 10: Poincare surface of section

3.4 Newton-Raphson basin of attraction

We have drawn the basins of attraction by using 
the simple and accurate Newton-Raphson iterative 
method for solving systems of equation. This method 
is also applicable for systems of multivariate functions. 
The iterative algorithm of our problem is given by the 
system        

1 1

1

( , )

,
n n

n n
ξ hh h ξh

ξξ hh ξh hξ ξ h

ξ ξ
− −

−

 Ω Ω −Ω Ω
= −  Ω Ω −Ω Ω 

 

1 1

1

( , )

.
n n

n n
h ξξ ξ hξ

ξξ hh ξh hξ ξ h

h h
− −

−

 Ω Ω −Ω Ω
= −  Ω Ω −Ω Ω 

      (5)

Where 1 1,n nξ h− − are the values of the ξ andh
coordinates of the (n-1)th step of the Newton-Raphson 

iterative process. The initial point ( , )ξ h is a member of 
the basin of attraction of the root if this point converges 
rapidly to one of the equilibrium points. This process 
stops when the successive approximation converges to 
an attractor, with some predefined accuracy.  For the 

classification of the equilibrium points on the ( , )ξ h
plane, we will use color code. In this way a complete 
view of the basin structures created by the attractors 
(Fig. 11). Also we have shown the zoomed part of 
the basins of attractions near the primaries (Fig. 12). 
We used Mathematica software for finding basin of 
attraction.

Fig. 11: Newton-Raphson basin of attraction under the effects of 
solar radiation pressure where orange dots indicate the locations 
of the equilibrium points and black dots indicate the locations of 
the primaries.

Fig. 12: The zoomed part of Fig. 11 near the primaries.

4.	 Stability

Using the procedure given by Mccuskey 
[16], we can examine the stability of the 
equilibrium points in the photogravitational circular 
restricted four-body problem. Let us suppose 

Abdullah A. Ansari: The Photogravitational Circular Restricted Four-body Problem with Variable Masses



Journal of Engineering and Applied Sciences, Vol. 3, Issue (2) November, 2016

36

0 0 0, , ,ξ ξ a h h β ζ ζ γ= + = + = +  putting these 
values in equation (1), we get 

0 0 0
1'' 2 ' ' ,ξξ ξh ξζa β a a a β γ− − = Ω + Ω + Ω

0 0 0
1'' 2 ' ' ,hξ hh hζβ a a β a β γ+ − = Ω + Ω + Ω

0 0 0
1'' ' ,ζξ ζh ζζγ a γ a β γ− = Ω + Ω + Ω              (6)

Where ,a β and γ are the small displacements 
of the infinitesimal body from the equilibrium points. 
Suffix zero denotes the value at the equilibrium point. 

To solve equation (6), let 

, , ,Ae Be Ceλτ λτ λτa β γ= = =  

where A, B and C are parameters. 

After substituting these values in equation (6), we get

2 0 0 0
1( ) B(2 ) C 0,A ξξ ξh ξζλ a λ λ− −Ω − +Ω − Ω =

0 2 0 0
1A(2 ) ( ) C 0,Bhξ hh hζλ λ a λ−Ω + − −Ω − Ω =

0 0 2 0
1B ( ) 0,A Cζξ ζh ζζλ a λ− Ω − Ω + − −Ω =    (7)

The equation (7) will have a non-trivial solution 
for A, B and C, if
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0 2 0 0
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0 0 2 0
1

(2 )
2 0,
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a a
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+ Ω + Ω − Ω +Ω Ω

− Ω − Ω +Ω Ω +Ω Ω
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1 1 1

0 0 0 2 0 0 0 2
1

0 2 0 0 0 0
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hh ζζ ξζ hh ξξ hζ

ξh ζζ ξξ hh ζζ

a a a

a

Ω Ω + Ω − Ω Ω

− Ω Ω + Ω Ω +Ω Ω

− Ω Ω −Ω Ω Ω =

        (8)

  

Table 1: Eigen Values

 Coordinate of
Equilibrium Points

Eigen Values ( )

L1

L2

L3

L4

L5

We solved the equation (8) for all the values 
of the equilibrium points and for each equilibrium 
point, we found six eigenvalues in which at least one 
is either positive real value or positive real part of the 
eigenvalues (Table 1). Therefore, all the equilibrium 
points are unstable.

5. Conclusions
In this paper, we explore the locations and 

stability of the circular restricted four-body problem by 
supposing all the masses are varying with time and one 
of the masses is source of radiation pressure. The three 
primaries are placed at the vertices of an equilateral 
triangle and revolving around their center of mass 
which is taken as origin. We derive the equations of 
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motion which are different from the classical case by 
the factors 1 and ka . We have plotted the graphs for 
the locations of the equilibrium points in three planes, 
the time series, the surfaces and the Newton-Raphson 
basin of attraction. In the ( , )ξ h plane, we found five 
equilibrium points (Fig. 2) which are ten in the classical 
case, where the green dots denote the locations of the 
equilibrium points and the purple dots denote the 

locations of the primaries. In the ( , )ξ ζ  plane, we 
found five equilibrium points (Fig. 3) where the green 
dots denote the locations of the equilibrium points. In 
the  ( , )h ζ  plane, we found three equilibrium points 
(Fig. 4) where the black dots denote the locations of the 
equilibrium points. From the time series, we observed 
that the orbits are not periodic (Fig. 5 & 6). We have 
drawn the surfaces of the motion of the infinitesimal 
body in three spaces (Figs. 7, 8, 9) and the Poincare 
surface of section where we got discrete type graph 
(Fig. 10). We also have drawn the Newton-Raphson 
basin of attraction (Fig. 11), where we have shown 
the convergence of the equilibrium points and the 
locations of equilibrium points are indicated by orange 
dots and the locations of the primaries are indicated by 
black dots. The Fig. 12 is the zoomed part of the Fig. 11 
near the primaries. Zotos [27, 28, 29, 30] are illustrated 
basins of attraction in the classical case and they found 
scorpion type graph which is different from my case.  
Finally, we examine the stability of the equilibrium 
points for the circular restricted four-body problem 
with radiation pressure and found at least one positive 
real value or one positive real part of the eigenvalues 
(Table 1). Hence all the equilibrium points are unstable.  
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