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Abstract 

In this paper, we applied successive ultraspherical integration matrices, which are used for the numerical solution of 
fourth order linear boundary value  problem  arising  in  bending  of  a  rectangular  beam  on elastic  foundation. This method is 
used to approximate for the highest-order derivative and generating approximations to the lower-order derivatives through 
integration of the highest-order derivative. We can then use the produced equations in the form of algebraic system and hence it 
is converted to nonlinear programming. Numerical examples illustrated the accuracy and efficiency of the proposed method 
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1. Introduction 

Fourth order linear BVP has been solved by 
various numerical methods. Shahid S. Siddiqi et al. 
[9] have used non polynomial spline to solve fourth-
order boundary value problems. Siraj-ul-Islam et al. 
developed a technique based on quartic non-
polynomial spline functions for approximations to the 
solution of a system of fourth-order. Riaz A. Usmani 
developed the method of the solution for fourth-order 
boundary value problem, considering it to be the 
problem of bending a rectangular clamped beam of 
length   resting on an elastic foundation.  

The aim of this paper is to present 
ultraspherical spectral integration matrices depends 
on using ultraspherical polynomials for solving beam 
bending boundary value problem.   

 

The organization of this paper is as follows: 
In section 2, we introduce ultraspherical polynomials 
and some of its properties. In section 3, we presented 
the procedure of the steps of ultraspherical spectral 
integration method. In section 4, we introduce a 
Description of the used method. In section 5, we 
present numerical results demonstrating the accuracy 
of our methods for some example of beam bending 
boundary value problem. Section 6, contains the 
conclusion of this paper. 

2. Ultraspherical Polynomials and Some 
Properties: 

 
The ultraspherical or Gegenbauer 

polynomials with the real parameter (𝜶 > −𝟏/𝟐

, 0α ≠ ), are a sequence of polynomials ( ) ( )jC xα , 

0,1,2,...j = . In the finite domain [ 1,1]x∈ − , each 
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degree j  satisfies the orthogonality relation 
respectively as follows: 

 
1 12 ( ) ( )2

( )
1 ,

0, ,
(1 ) ( ) ( )

,j k

j

j k
x C x C x dx

j k
α α α

αψ

−

−

≠
− =∫

=

⎧
⎨
⎩

(2.1) 

Here the normalization constant ( )
j
αψ  is defined 

as Szegö: 

{ }
( ) 1 2

2
( 2 )2 , 0

( ) ( ) ( 1)j

j
j j

α α α
ψ π α

α α
− Γ +

= ≠
+ Γ Γ +

 (2.2)  

The polynomials may be generated by the 
Rodrigue’s formula given as Bell: 
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where [ / 2]j refers to the integer part of the 
fraction. 

The general expressions for ultraspherical 
polynomials can be put in the following way: 
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A relation between the coefficients +1( )r
jG α  and 

( )r
jG α  is given by  
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In particular, we have the special values 
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The fundamental recurrent formulae for 
ultraspherical polynomials are defined as  
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with the first two being: ( )
0 ( ) 1C xλ = ,    

( )
1 ( ) 2C x xλ λ= . 

Theorem (2.1): 

 The m-th integral of the ultraspherical 
polynomials (2.4) is expressed in terms of 
ultraspherical polynomials as follows: 
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Proof: see M. A. Ibrahim  

We used an approximation of any continuous 
function ( )f x and an approximation of their 
integrals by interpolating the function with 
ultraspherical polynomials at two sets of nodes: 

• The set of  equally spaced  points: 

           1
2

{ 1 , 0,1,.., }i
i

N
S x i N= = − + = . 

• The set of zeros points of  the ultraspherical  
polynomials:  

 { }( )
2 1: ( ) 0, 0,1,..,i N iS x C x i Nα

+= = = . 

Theorem (2.2): 

 If ( )Nf x  is the ultraspherical approximation to a 
function ( )f x  in finite expansion, i.e. 

     ( )

0
( ) ( )N

N

j j
j

f x a C xα

=

=∑ ,                      (2.9) 
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then 
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Proof: See El-Hawary et al. 

3.  Ultraspherical Integration Matrices 

Many authors presented spectral integration 
matrices proven successful in the numerical 
approximation of many types of differential 
equations such as. Elbarbary presented spectral 
successive integration matrix where it can be used to 
construct a Chebyshev expansion method for the 
solution of boundary value problems. We 
approximate the integral of a function ( )f x  by 
interpolating the function with ultraspherical 
polynomials at the points 1S  and 2S . 

 Theorem (3.2):  

If ( )f x is approximated by ultraspherical 
polynomials, then the m-th integral of ( )f t  is 
approximated by ultraspherical expansion in the 
form: 
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where the entries of m-th ultraspherical integration 
matrices ( )

, ( )
m
i kq α , , 0,1,...,i k N= are given as 

follows: 
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 Proof: See M. A. Ibrahim  
 

4. Description of the method 

We consider a general fourth order boundary 
value problem given by 

 (4) ( ) ( ) ( ) ( ) , [ , ],y x f x h y g x x a b+ = ∈  (4.1) 

 
Subject to the boundary conditions: 

0 0

(1) (1)
1 1

( ) , ( ) ,

( ) , ( ) .

y a y b

y a y b

ν β

ν β

= =

= =
 

Where 0ν , 1ν , 0β  and 1β  are finite real constants, 

and ( ), ( )f x h y  and ( )g x  are continuous 

functions on the interval[ ],a b . 

By applying ultraspherical integration 
method (2.11), the highest derivative of y(x) can be 
written as 

(4) ( ) ( )y x x=Φ .                         (4.2) 

The low-order derivatives ( )k k
iy x x∂ ∂ , 

0,1, 2,k =  0,1,...,i N= are generated through 
integration of equation as follows 
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The successive integration of equations (4.2) to (4.6) 
is approximated by ultraspherical integration method 
as follows: 

  ( )3 (1)
,, 1

0
( ) ( ) ( )

N

i i j j
j

y x q x cα
=

= Φ +∑                                

(2) (2)
, 1 2

0
( ) ( ) ( ) ( ) ,

N

i i j j i
j

y x q x x a c cα
=

= Φ + − +∑                                    

(1) (3) 2
, 1

0

1 2 3

1( ) ( ) ( ) ( )
2

( ) ,

N

i i j j i
j

x q x x a cy

x a c c

α
=

= Φ + −∑

+ − +

4

(4) 3
, 1

0

2
2 3

1( ) ( ) ( ) ( )
6

1 ( ) ( ) .
2

N

i i j j i
j

i i

y x q x x a c

x a c x a c c

α
=

= Φ + −∑

+ − + − +

  

Then we can determine the approximation solution 
( )iy x  by determining the coefficients ,ic
1, 2,3, 4i =  from the boundary conditions of the 

problem of fourth order boundary value problem. 

 By Substituting the approximation solution in 
equation of the problem of fourth boundary value 
problem (4.1) and then we obtain the unconstrained 
optimization problem, which can be written as 

Minimize  

  ( ),α= ΦF F                                    (4.7)                                                  

Where      

             [ ]0 1( ), ( ),..., ( )Nx x x= Φ Φ ΦΦ .   

The unconstrained optimization problem (4.7) can be 
solved using partial quadratic interpolation method 
(El-Gindy). 

5. Numerical examples 

 In this section, we will use ultraspherical 
integration method to get an approximate solution in 
solving the beam bending boundary value problems, 
the clamped-clamped beam which belongs to the 
general class of the boundary value problems in the 
form: 

(4)

(1) (1)

( ) ( ) ( ) ( ) , [0,1],

(0) (1) (0) (1) 0.

y x f x p y g x x

y y y y

+ = ∈
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Example 5.1 

Consider the following boundary value 
problem which describes the model of the bending of 
a thin beam clamped at both ends: 

(4) 4 3 2( 14 49 32 12) ,
[0,1]

xy x x x x e
x

= + + + −

∈
   (5.1)       

Subject to the boundary condition 

(1) (1)(0) (1) 0,  (0) (1) 0.y y y y= = = =   (5.2) 

The analytic solution of the above system solution 
is:  

   2 2( ) (1 ) xy x x x e= −  

We apply ultraspherical integration method (2.11) 
the highest derivative of y can be written as 

(4) ( ) ( )y x x=Φ .                    (5.3) 

The low-order derivatives ( )k k
iy x x∂ ∂ ,

0,1, 2,3k = ; 0,1,...,i N= are generated through 
integration of equation (5.3) as follows 
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The constants , 1,2,3,4ic i = can be determined 
from the boundary conditions these constants are 
found to be 

 4 0c =                                          (5.8)    
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3 0c =                                                    (5.9) 
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         Substituting from equations (5.8) to (5.11) in 
equation (5.7) 
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Then by substituting ( )iy x  in the equation (5.1) 
and we can be written as: 

Minimize   

   ( ),α= ΦF F ,                             (5.13)                        

Where    

[ ]0 1( ) , ( ),..., ( )Nt t t= Φ Φ ΦΦ . 

It can be solved by using partial quadratic 
interpolation method (El-Gindy). 

The following table presents the maximum 
absolute error, obtained by using ultraspherical 
integration methods at the points given in 1S , 2S and 
Fig 5.1 mad a comparative between the approximate 
solution and the exact solution for N=10 In 2S . 

 

 

 

 

Table (5.1): The maximum absolute error by 
ultraspherical integration Methods at 1x S∈ , 

2x S∈ . 

N 
1x S∈  2x S∈

 

α  MAE α  MAE 

4 -0.22 3.94E-02 -0.49 1.93E-02 

6 0.49 8.24E-04 -0.25 2.80E-04 

8 -0.10 6.03E-06 0. 49 1.18E-06 

10 0.75 2.17E-08 0.12 2.57E-09 

12 0.49 2.09E-09 0.22 2.13E-09 

16 0.499 2.13E-09 -0.49 2.11E-09 

Table (5.2): Comparison between exact solution 
with the result in approximation solution to 
Ultraspherical integration method for N=10 in 1S . 

x  exact solution Ultraspherical 
integration method error 

0.1 0.00895188 0.00895191 2.17E-08 

0.2 0.03126791 0.03126793 1.78E-08 

0.3 0.05952877 0.05952879 1.81E-08 

0.4 0.08592910 0.08592912 1.70E-08 

0.5 0.10304508 0.10304510 1.64E-08 

0.6 0.10495404 0.10495406 1.53E-08 

0.7 0.08880649 0.08880651 1.46E-08 

0.8 0.05697385 0.05697386 1.30E-08 

0.9 0.01992279 0.01992280 1.52E-08 
 

 

Fig 5.1: the approximate solution and the exact 
solution for N=10 In 2S . 

 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1 1.2

approx solution
exact solution



42 M. El-Kady et al/ Journal of Engineering and Applied Sciences 1 (1) 37–43 

 

Example 5.2 

Consider the following nonlinear fourth-order 
B.V.Ps: 

( )
2 2

(4) 2
2 2 6

72 1 5 5 ,
1 1 ( )
[0,1]

x x
y x x

y x x
x

+ = − − + +
+ + −
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 (5.14)                                                                                         

Subject to the boundary conditions: 

(1) (1)

(0) 0, (1) 0,

(0) 0, (1) 0.

y y

y y

= =

= =
 

This has the analytic solution given by:  

      3 3( ) (1 ) .y x x x= −  

We apply ultraspherical integration method 
(2.11), the highest derivative of y can be written as 

(4) ( ) ( )y x x=Φ .                             (5.15)   

The low-order derivatives ( )k k
iy x x∂ ∂ ,

0,1,2,k = 0,1,...,i N= are generated through 
integration of equation (5.15) as follows 
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The constants , 1,2,3,4ic i = can be determined 
from the boundary conditions these constants are 
found to be 
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                     3 0c =                               (5.21)   
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Substituting from equations (5.20) to (5.23) in 
equation (5.19), we get 
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            (5.24) 

Then by substituting ( )iy x  in the equation (5.14)) 
and we can be written as:  

Minimize   

             ( ),α= ΦF F ,                           (5.25)  

Where  

[ ]0 1( ) , ( ),..., ( )Nt t t= Φ Φ ΦΦ . 

It solved by using partial quadratic interpolation 
method (El-Gindy). 

The following table presents the maximum 
absolute error, obtained by using ultraspherical 
integration method at the points given in 1S , 2S and 
Fig (5.2) mad a comparative between the 
approximate solution and the exact solution for N=10 
In 2S .  
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Table (5.3): The maximum absolute error by 
ultraspherical integration methods at 1x S∈ , 

2x S∈ . 

N 
1x S∈  2x S∈

 

α  MAE α  MAE 

4 0.13 3.30E-02 -0.33 1.66E-02 

6 -0.11 1.36E-08 -0.37 1.31E-08 

8 -0.35 1.35E-08 -0.11 1.21E-08 

10 1.30 1.34E-08 0.49 1.35E-08 

12 0.59 1.36E-08 -0.21 1.22E-08 

16 0.49 1.35E-08 -0.22 1.35E-08 

 

Table (5.4): Comparison between exact solution 
with the result in approximation solution to 
Ultraspherical integration method for N=10 in 1S . 

6. Conclusion 

In this study, ultraspherical integration method has 
been applied to obtain the numerical solutions for 
solving beam bending boundary value problem, at the 
set of equally spaced points or the set of zeros points. 
The numerical results demonstrated the efficiency 
and accuracy of the proposed scheme of the method. 
The numerical results obtained by the proposed 
method are in a good agreement with the exact 
solutions available in the literature. By considering 
that the accuracy of our method depends on specified 
value of the parameter ultrasphericalα . 

 

 
Fig 5.2: the approximate solution and the exact 

solution for N=10 In 2S . 
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