- PRACTICAL ELECTROCARDIOGRAPHY

DR QAZI IMTIAZ
 RASOOL
 - OBJECTIVES

- Recording of electrical events in heart
- Established electrode pattern results in specific tracing pattern
- Health of heart i. e. Anatomical consideration
- Blood supply of heart
- Effect of drugs
- Effect of ions
- Artificial pace makers
- The Principle of Electrocardiograph;-
is a modified galvanometer in which the recordings are made by electrodes placed on the body surface, sensing the electrical impulses of heart

ECG Paper :

is actually a black paper on which a heat sensitive, white or rose substance is coated This coating is erased by the heated stylus Black paper

- Principle of recording
- Positive/upward vs. negative/downward deflection
- "wave of depolarization" = "wave of positive charge"
- Wave of depolarization moving towards positive electrode $=$ positive deflection and vice-versa
- Lead axis if parallel maximum deflection and vice-versa
- 12 leads minimum required different views of the same electrical activity
- Electrical = Mechanical activity
- SA node - silent
- P wave $=$ atrial contraction, Atrial DP

3. AV node, His bundle, Purkinje fibers - PR interval
4. $\quad \mathrm{PR}$ segment $=$ allows time for blood to pass from atria to ventricles
5. QRS- Ventricular depolarization
6. Ventricular isoelectric
7. period (initial - plateau of ventricular repolarization) ST segment

8. Ventricular repolarization - T wave

9 J point is the point at which the S wave ends and

the ST segment begins J point elevation

5. Atrial repolarization during

QRS

- Electrocardiogram
- Summation of AP of cardiac cells
- Force vector = direction and magnitude
- 12 lead EKG - "Views"
- Bi-polar limb leads - FRONTAL I, II \& III
- Uni-polar chest leads -
- Augmented voltage; aVF, aVL, aVR
- Transverse V1 - V6
- Augmented Voltage Leads

Wilson central terminal (WCT) is formed by connecting a 5000Ω resistance to each limb electrode and interconnecting the free wires; the CT is the common point.
represents the average of the
limb potentials. Because no
current flows through a highimpedance voltmeter,

Kirchhoff's law requires that $I_{R}+I_{L}+I_{F}=0$.
$\frac{\text { 2.UNIPOLAR LIMB LEAD }}{1 \text { positive and remaining } 2}$ leads combine negative lead
-aVF (LF+,RA-,LA-)
-aVL (LA+,RA-,LF-)

- aVR (RA+,LA-,LF-)
- $\frac{\text { 3.Uni-polar chest leads - }}{\text { Transverse V1-V6 }}$
- Basic EKG - 6 Chest Leads

Cover heart in normal
anatomical position
Horizontal or Transverse plane

- $\mathrm{V} 1, \mathrm{~V} 2=$ right chest
- V3, V4 = inter-ventricular septum
- V5, V6 = left chest

NOTE;- deflection changes from V1 to V6

- Electrocardiogram?
- Standardization
- Rate
- Rhythm
- P wave
- PR interval
- QRS duration
- QRS morphology
- Abnormal Q waves
- ST segment
- T wave
- QT interval
- Axis
- Standardization
- Time recorded on X axis ($25 \mathrm{~mm}=1$ $\mathrm{sec})$
- Voltage recorded on Y axis ($10 \mathrm{~mm}=+1$ mV)
- Smallest divisions are 1 mm by 1 mm
- Heavy black lines $=5 \mathrm{~mm}$ square
- Amplitude vs. deflection
- $1 \mathrm{~mm}=0.04 \mathrm{sec}$; heavy lines $=0.2 \mathrm{sec}$
- 3 sec marks = bottom/top of paper
- Rate calculation
- Cardiac cycles per minute
- Methods -
- Triplets; (5X60)300, 150, 100, 75, 60, 50
- < 60 bpm; \# cycles per 6-sec strip, add 0
- Methods - calculator
- Divide (25X60)1500 by \# of square between Ps or Rs (0.04 $\sec \times 1500=60 \mathrm{sec}):$ VARIABLE - not good with irregular rhythms
- Measure mm between several complexes; divide (1500/mm)*cycles: SUMMARY better
- \quad Sinus Bradycardia = sinus rhythm < 60 bpm
- Sinus Tachycardia = sinus rhythm > 100 bpm
- Rhythm
- Different to rate!
- Is there a clear P wave before each QRS? (lead II)
- Regular vs irregular
- Tachyarrhythmias vs bradyarrhythmias
- Commonest rhythm is SR (ie. normal)
- Commonest arrhythmia is AF
- NORMAL

ELECTROCARDIOGRA M

- PR interval
- $\frac{\text { Start of } P \text { wave to start of }}{\text { QRS }}$
- Normal $=0.12-0.2 \mathrm{~s}$
- Too short - can mean WPW syndrome (ie. an accessory pathway), or normal!
- Too long -means AV block
(heart block) - $1^{\text {st }} / 2^{\text {nd }} / 3^{\text {rd }}$ degree
- QRS complex
- Should be <0.12 s duration
- $>0.12 \mathrm{~s}=\mathrm{BBB}$ (either LBBB or RBBB)
- 'Pathological' Q waves can mean a previous MI
- $\quad>25 \%$ size of subsequent complex
- Q waves are allowed in V1, aVR and III
- ST segment
- ST depression
- Downsloping or horizontal = abnormal
- Ischaemia (coronary stenosis)
- If lateral (V4-V6), consider LVH with 'strain' or digoxin (reverse tick sign)
- ST elevation
- Infarction (coronary occlusion)
- Pericarditis (widespread)
- T wave
- Peaked (hyperkalaemia or normal young man)
- Inverted/biphasic (ischaemia, previous infarct)
- Small (hypokalaemia)
- QT interval
- Don't worry about too much...
- Start of QRS to end of T wave
- Needs to be corrected for HR
- Various formulae
- eg. Bazett's:
- Computer calculated often wrong
- Long QT can be genetic (long QT sy.) or secondary eg. drugs (amiodarone, sotalol)
- Associated with risk of sudden death due to Torsades de Pointes
- Basic Axis - 6 Limb Leads
- Standard \& augmented leads
- Divide chest into 30 degree "views"
- "lateral leads" - I \& aVL
- "inferior leads" - II, III \& aVF
- $\mathrm{I}=0$ degrees $(+), 180=(-)$
- aVF = +90 (+), -90 (-)
- Axis
- Direction of the movement of depolarization
- Vector - indicates direction and magnitude
- Mean QRS Vector = summation of small vector direction and magnitude
- AV Node is center
- Clinical Importance:

Normal axis $=-30^{\circ}$ to $+110^{0}$
Analyze quadrant with Lead I and aVF

Two thumbs up = POSITIVE

- Classic Triad of MI
- Ischemia
- Reduced blood supply
- Inverted symmetrical T waves OR ST segment depression
- Check chest leads!
- Injury (acute or recent infarct)
- ST segment elevation
- Earliest EKG sign of an infarct
- Infarction
- Presence of Q wave
- 1 mm wide or $1 / 3$ QRS complex - Myocardial Damage Location Limb Leads:

L2, aVF, L3: Inferior
L1, aVL: Lateral
aVR: Cavity
Chest Leads:
V1, V2: Anterior
V3, V4: Septal
V5, V6: Lateral

