Autacoids III EICOSANOIDS

(prostaglandins, thromboxanes, leukotrienes) OBJECTIVES

1.Describe the pharmacology of prostaglandins and its clinical Implications

2.List the major clinical implications and toxicities of ergot alkaloids on the major organ systems

Eicosanoids

Eicosanoids are produced from arachidonic acid, a 20-carbon polyunsaturated fatty acid (5,8,11,14eicosatetraenoic acid)

The eicosanoids are considered "autacoids"

- o They act on cells close to their site of production
- o They are rapidly degraded
- They have both intercellular signaling, & intracellular signal cascades

The Cyclooxygenase Pathway Prostanoids

Prostaglandin H₂ Synthase production of PGs, PGI₂ & TXA₂

PGH₂ synthase & Cyclooxygenase (COX) are used as synonyms

PG endoperoxides (PGG₂ & PGH₂) are more potent & long-acting than the PGs to which they decompose

TXA₂ formed mainly in platelets by TX synthase mediating vasoconstriction & platelet aggregation PGI₂, formed mainly in endothelium by PGI synthase opposes TXA₂

The Cyclooxygenase Pathway

□ Two isoforms of COX exists: COX-1 (constitutive form) & COX-2 (inducible form) \Box COX-1 is constitutively expressed at low levels in many cell types \Box COX-2 is constitutively expressed in kidney & CNS

✓COX-2 gene transcription is stimulated by growth factors, cytokines, & endotoxins **D**A COX-1 variant, named COX-3, plays a significant role in pain sensation in paracetamol-sensitive way

Prostaglandin receptors:

- Prostaglandins &
 related compounds are
 transported out of the
 cells that synthesize
 them.
- Most affect other cells by interacting with plasma membrane **Gprotein coupled receptors**.

Depending on the cell type, the activated Gprotein may stimulate or inhibit formation of **cAMP**, or may activate a phosphatidylinositol signal pathway leading to intracellular Ca⁺⁺ release.

Another prostaglandin ◆ receptor, designated
 PPAR□, is related to a family of nuclear

receptors with transcription factor activity. Prostanoids Receptors Prostanoid receptors are AC/PLC G-protein coupled Rs □Five main classes; **DP** $(PGD_2), FP (PGF_{2\alpha}), IP$ (PGI₂),**TP** (TXA₂),& **EP** (PGE₂)

Eicosanoid synthesis is activated by:

- ✓ Pathological stimulus: tissue injury/disease
- Transmitter release like
 BK, AngII, NE

Prostanoids Biologic Effects

Cardiovascular System

- □ PGI₂/D₂/E₂ →dilation of arterioles, precapillary sphincters & post-capillary veins → increased blood flow & cardiac output
- **TXA**₂ is a potent vasoconstrictor

- □ TXA₂ & *PGI*₂ are potent platelet aggregation inducer & *inhibitor* respectively (blood fluidity)
- PGI₂ de-aggregate platelets clumps & reduces myocardial infarct size & ischemic organ damage
- □ PGI₂, PGE₂, & NO are simultaneously released from endothelium
- PGE₂ inhibits B- & T-lymphocyte activation & proliferation, inhibiting antibodies & lymphokines production

Prostanoids Biologic Effects

Smooth muscle:

> Bronchial muscle relaxation by PGE₂ &

PGI₂, but constriction by TXA₂, LTC₄ & LTD₄

> Human pregnant uterus is contracted by PGE_{1/2}, and PGF_{2α}

GIT: PGE_s & PGI₂ inhibit gastric acid secretion & reduce pepsin content ➤ They increase bicarbonate, mucus & blood flow Increased electrolyte/water movement into intestinal lumen (diarrhea)
 TXA₂ is proulcerogenic

Prostanoids Biologic Effects Renal System

PGs enhance urine formation, natriuresis, & kaliuresis via action on renal blood flow & tubules

PGD₂, PGE₂, PGI₂ stimulate renin release PGs inhibit water re-absorption under ADH effect

Nervous system

Hyperthermia by PGE₂, related pyrogeninduced fever

Antipyretic action of ASA & NSAIDs is via inhibition of COX-1, -2 & -3

Algesia induction & pain sensitization to histamine, BK or mechanical stimuli

Analgesic action of ASA & NSAIDs is via inhibition of COXs

The Lipoxygenase Pathway

 Lipoxygenase, catalze the addition of O₂ to double bond(s) of arachidonic acid forming hydroperoxy-eicosatetraenoic acid (HPETE)

- ✓ 5-, 12- & 15- lipoxygenases \rightarrow 5-, 12- & 15-HPETEs respectively
- ✓ 5-HPETE is converted to leukotriene-A₄ (LTA₄), which in turn may be converted to various other **leukotrienes**

Leukotriens (Slow-**Reacting Substance of** Anaphylaxis, SRS-A) **Cysteinyl LTs** $(LTC_4/D_4/E_4/F_4)$ cause potent vasoconstriction & small airway constriction They increase tracheal mucus secretion

They may be of role in immediate hypersensitivity X asthma, where corticosteroids are effective antiallergic via LTs inhibition (but NOT ASA) LTB₄_produced from PMNLs has a potent chemotactic activity (Inflammation/damage)

>LTB₄ induce aggregation of PMNLs in joint diseases (gout, arthritis) skin & diseases (psoriasis) The Epoxygenase Pathway A cytochrome P450 epoxides double bonds of the precursor FA (arachidonate) into mono-epoxide FA; epoxy

eicosatetraenoic acids (EPETEs) EPETEs are involved in vascular tone modulation, ion transport, hemostasis & hematopoiesis

Prostanoids Therapeutic Uses UTERINE STIMUL&TION

Dinoprostone (PGE₂): <u>Prostin E₂ vaginal</u> <u>suppositories</u> used to induce abortion between 12th -20th gestational weeks

Prostin E₂ oral tablets for elective induction of labbour/obliged induction because of HTN, toxemia, intrauterine death • Treatment of duration < 18 hrs Prostin E₂ vaginal gel used for induction of labour at term or near term (I-2 mg intravaginal, repeated Q 6hrs according to response)

Prostanoids

Therapeutic Uses UTERINE STIMULATION

Carboprost (15-methyl $PGF_{2\alpha}$) Used by IM route for induction of abortion between 12th -20th gestational weeks Used at a dose of 250 µg every 1-3 hrs **Dinoprost** (PGF_{2α})

Injection form for intraamniotic administration Used to induce labour or abortion **Prostanoids**

Therapeutic Uses

Misoprostol is a synthetic methyl ester analogue of PGE₁
> Used to prevent drug-induced gastric ulceration during

NSAIDs, corticosteroid or anticoagulant therapy \blacktriangleright It can be used alone or in combination with antacids for duodenal ulcer treatment Not used for pregnant women or whom are planning pregnancy **Prostanoids Therapeutic Uses Platelet Aggregation**

Epoprostenol (PGI₂): It is used as a heparin replacement in some hemodialysis patients Used to prevent platelet aggregation in extracorporal circulation systems Impotence **Alprostadil** (PGE₁) was used by in jection into corpora cavernosa to maintain erection

✓ Replaced by PDE-V inhibitors Leukotriens Therapeutic Importance **ULTs have no** therapeutic uses, but LTs antagonists have **Anti-asthma** medications: ✓ 5-Lipoxygenase Inhibitors, e.g., zileutin ✓ Leukotriene-receptor antagonists;

montelukast, & zafirlukast

Platelet-Activating factor (PAF) PAF, another lipidderived autacoid Released from inflammatory cells & platelets by PLA₂, upon activation It has a role in many types of inflammation, bronchial hyperresponsiveness, and delayed phase of asthma PAF antagonists (receptor/production inhibition) are potential antiinflammatory & antiasthmatic drugs Corticosteroids antiinflammatory effect comprise PAF production inhibition Peripheral Effect **Central Effects**

Central Effects Uterotonic Effects

THANK YOU