KINGDOM OF SAUDI ARABIA

THE NATIONAL COMMISSION FOR ACADEMIC ACCREDITATION & ASSESSMENT

COURSE SPECIFICATION HASEB 243

Revised March 2007

Course Specification

Almajmaah University

College: Al Majmaah Community College

Department: Computer Sciences

A. Course Identification and General Information

1. Course title and code: Data Structures - HASEB 243

2. Credit hours: 3 Hours (*Lecture*: 2 Hours/week) *Lab*: 2 Hours/week)

3. Program in which the course is offered: Computer science (Career Program)

4. Name of faculty member responsible for the course :

Mr. Ahmad Almasri

5. Level at which this course is offered : Fourth level

6. Pre-requisites for this course:

HASEB 231 – Computer Programming(2)

7. Co-requisites for this course (if any): None

8. Location: Main campus **Room No:** (A2..3),(A2..9) **Lab No:** A1..8

B - Objectives

Upon successful completion of this course, students should be able to:

- 1. Distinguish the difference between different static and dynamic data structures
- 2. Create algorithms and programs to manipulate different data structures.

C. Course Description

Topics to be Covered					
Contents	Nb of Weeks	Contact hours			
Arrays and sorting methods	3	12			
Pointers	1	4			
Structures	1	4			
Classes and Objects	2	8			
Linked Lists	2	8			
Stacks	1	4			
Queues	1	4			
Recursion	2	8			
Trees	2	8			

2. Course components (Total contact hours per semester)					
Lecture Tutorial		Labs	Other		
60 hrs	30 hrs	30 hrs			

3. Additional learning hours expected for students per week

The student must work at least for 4 hours per week which is equivalent to 60 hours per semester.

4. Development of learning outcomes in the domains or areas of learning

a. Knowledge
(i) Knowledge to be acquired:
- Knowing how to create and manipulate arrays
- Knowing the basics of Object Oriented Programming
- Knowing how to create and manipulate dynamic Data Structures (Linked Lists,
Stacks, Queues, etc.)
- Knowing how to create and manipulate Binary Search Trees.
(ii) Teaching strategies to be used to develop that knowledge:
- Lectures
- Exercises
- Labs.
(iii) Methods of assessment of knowledge acquired:
- Exams
- Labs evaluation.
b. Cognitive Skills
(i) Cognitive skills to be developed:
- Ability of analysis
- Ability of programming
- Ability of deduction and inference
(ii) Teaching strategies to be used to develop these cognitive skills :
- Exercises
- Labs.
(iii) Methods of assessment of students cognitive skills
- Exams

- Labs evaluation.

c. Information Technology and Numerical Skills

- (i) IT skills to be developed:
- Using windows operating system efficiently
- Ability of programming in C++ using the Object Oriented Approach
- Using office applications (word, Power Point ,...) to write reports, design presentations, ... etc.
- (ii) Teaching strategies to be used to develop these IT skills :
- Assign to students a little programming project
- Assign to students to make research on a specific subject related to Data Structures.
- (iii) Methods of assessment of students cognitive skills
- Exams
- Labs evaluation
- Project evaluation and discussion of researches.

5. Schedule of Assessment Tasks for Students During the Semester				
Assessment	Assessment task	Week due	Proportion of Final Assessment	
1	Attendance, Participation and Labs evaluation	Each week	10	
2	First month exam	6 th week	20	
3	Second month exam	10 th week	20	
4	Research (a little programming	12 th week	10	

	project)		
4	Final exam	According to the exams schedule	40

D. Student Support

- 1. Arrangements for availability of faculty for individual student consultations
- Office hours: 2 hours a week

D a y	8-9	9-10	10-11	11-12	1-2	2-3	3-4
Sunday							
Saturday							
Monday							
Tuesday		Office Hours					
Wednesda							
у							

E. Learning Resources

1. Required Textbooks

1. M. A. Weiss, "Data structures And problem solving in C++", Addison Wesley, 2003

2. Recommended Book(s)

Deitel & Deitel, C++: How to program, Prentice Hall, 2004 (or latest).

3. Electronic Materials, Web Sites, etc.

www.cplusplus.com

http://msdn.microsoft.com

F. Facilities Required

- 1- A Lecture room appropriate for 30 students with a personal computer, a data show and a smart board.
- 2- A Computer Lab equipped with 30 PCs with a C++ compiler (latest version).

G. Course Evaluation and Improvement Processes

1. Strategies for Obtaining Student Feedback on Effectiveness of Teaching:

- Students have to evaluate the teacher rendering before obtaining results through the university web portal *edugate*.

2. Processes for Improvement of Teaching:

- Periodical review of contents in the department to increase the effectiveness of the subject.
- Comparison of the course content with similar courses offered in others colleges
- Updating of the learning resources according to later developments in the domain of data structures.
- Using modern technologies in teaching and providing additional support to students.