

المملكة العربية السعودية وزارة التعليم العالي جامعة المجمعة كلية العلوم بالزلفي قسم الرياضيات

COURSE CLASSIFICATION FORM

Course Number/Name		MATH 472 Differential Geometry			
Prepared by		Dr. Abd El-Nasser Ghai	reeb		
Program Learning Outcomes	Levels* (0,1,2, 3,4,5)	Relevant Activities	Assessment Methods/Metrics		
a1. Apply fundamentals and concepts of mathematics.	5	- Lectures - assignments	• 3 Midterm and final exam		
a2. Apply fundamentals and concepts General sciences and Computer skills.	3	- assignments on logic statements	1 Midterm and final examHome work		
a3. Realize Social and ethical	0		•		
b1. Read and construct mathematical arguments and proofs.	4	- Lectures - assignments	Home work		
b2. Apply critical thinking skills to solve problems that can be modeled mathematically.	5	LecturesassignmentsOral discussion	• 3 Midterm and final exam+ Home work		
c1. Work independently and within a team	3	Divided students into groups and using oral discussion with homework	Home work		
c2. Bear responsibility for different situations.	2		• Quizzes		
c3. Realize codes of ethics and their importance.	0				
d1. Communicate a depth and breadth of mathematical knowledge, both orally and in writing.	4	LecturesassignmentsOral discussion	 3 Midterm + final exam Home work Quizzes		
d2. Ability to Organize, connect and communicate mathematical and algorithmic ideas.	4	- Lectures - assignments	 Home work Quizzes		
d3. Critically interpret numerical and graphical data.	3	- assignments on information data and represented data	Home work Quizzes		
e1. Use computer and its applications as an office tool	3	- assignments on Logical expression	Home work Quizzes		

^{*} Please mark (or type) High (5), Medium-High (4), Medium (3), Low-Medium (2), Low (1) or Not At All (0) indicating the level to which you believe, as an instructor, the students have achieved these outcomes in this course.

المملكة العربية السعودية وزارة التعليم العالي جامعة المجمعة كلية العلوم بالزلفي قسم الرياضيات

Course Objectives and Outcomes

Course Number: MATH 472 Course Name: Introduction to Differential Geometry

Prepared by: Dr. Abd El-Nasser Ghareeb

Table 1: Relationship of course objectives/outcomes with PLO and ASIIN Criteria

Course Objectives:	Course Outcomes:	ASIIN	PLO
Have the knowledge of Theory of curves in R, Regular curves, arc length and reparametrization and	Define and recognize the Theory of curves in R, Regular curves, arc length and reparametrization and Natural parametrization.	a, b, e, m	
Natural parametrization.	Improve and outline the logical thinking.	b, c	
·	Illustrate how to communicating with: Peers, Lecturers and Community.	l, n	
Have the knowledge of Serret- Frenet apparatus, Existence and	Define and recognize the Serret-Frenet apparatus, Existence and uniqueness theorem for space curves and Bertrand curves.	a, b, c, g, m, j	
uniqueness theorem for space curves and Bertrand curves.	Shown the ability of working independently and with groups.	n	
	Illustrate how take up responsibility.	l, n	
Studying the Involutes and evolutes, Local theory of surfaces, Simple surfaces-Coordinate transformations, Tangent	Define and recognize the Involutes and evolutes, Local theory of surfaces, Simple surfaces- Coordinate transformations, Tangent vectors & tangent spaces, First and second fundamental forms.	a, b, f, h	
vectors & tangent spaces, First and second fundamental forms.	ability to write Mathematical equations in a correct mathematical way	a, j, g	
Studying the normal and geodesic	Define and recognize the normal and geodesic curvature.	a, c, h	
curvature.	Appraise how to Use the computer skills and library.	d, h	
	Illustrate how to Search the internet and using software programs to deal with problems	d, h	
Have the knowledge of Weingarten	Define and recognize the Weingarten map, Pricipal Gaussian and mean curvatures.	a, e, i	
map.	interpret how to Know the Weingarten map, Pricipal Gaussian and mean curvatures using the internet	k, h, g	
Studying principal Gaussian and mean curvatures	Define and recognize the principal Gaussian and mean curvatures	a, i	
mean curvatures	interpret how to Know the principal Gaussian	h, k	

Course	Obi	ectives	and	Outcomes
Course	-	0001100	ullu	Cateonies

	and mean curvatures using the internet		
	Define and recognize Geodesics- Equations of Gauss and Godazzi-Mainardi theory	a, i	
Studying the Geodesics- Equations of Gauss and Godazzi-Mainardi.	interpret how to Know the Geodesics-Equations of Gauss and Godazzi-Mainardi using the internet	k, h, g	

Table 2: Methods of assessment of course syllabus

TA/Grader Assessment Number/Type Instructor Peer/Self Method Assessed Assessed Assessed Homework 5 homework assignments Mid Terms/Final Exams 2 mid-term; 1 final exam Quizzes One biweekly X 1-2 wks 3-4 wks 1/2 sem Full sem **Individual Projects** 1-2 wks Team Projects 3-4 wks 1/2 sem Full sem \mathbf{X} \mathbf{X} Lab Assignments Computer Assignments Computer Tools Used Oral Presentations one Written Reports one Other Design project (project binder)

Outcome of ASIIN

- a Graduates have sound mathematical knowledge. They have a profound overview of the contents of fundamental mathematical disciplines and are able to identify their correlations.
- **b** Graduates are able to recognise mathematics-related problems, assess their solvability and solve them within a specified time frame.
- Graduates have a basic ability to work in a scientific way. They are in particular able to formulate mathematical hypotheses and have an understanding of how such hypotheses can be verified or falsified using mathematical methods.
- **d** Graduates can flexibly apply mathematical methods of fundamental component areas of mathematics and are able to transfer the findings obtained to other component areas or applications.
- e Graduates have abstraction ability and are able to recognise analogies and basic patterns
- f Graduates are able to think in a conceptual, analytical and logical manner.
- g Graduates have an extensive comprehension of the significance of mathematical modelling. Are able to create mathematical models for mathematical problems as well as for problems in other areas of science or everyday life, and have a selection of problem solving strategies at their disposal.
- h Graduates can use basic methods of computer-aided simulation, mathematical software and programming to solve mathematical problems
- i Graduates are in a position to solve more extensive mathematical
- j Graduates can classify, recognise, formulate and solve mathematics-related problems
- **k** Graduates use electronic media competently
- Graduates can implement lifelong learning strategies. A prerequisite for this is that the students are per-severing and that they have developed persistence.
- m Graduates can recognise, formulate, classify and solve problems in a mathematical context
- Graduates can communicate, possibly also in a foreign language, and contribute their work effectively in teams

المملكة العربية السعودية وزارة التعليم العالي جامعة المجمعة كلية العلصوم بالزلفي قسم الرياضيات

Instructor Course Evaluation Form

The purpose of this evaluation is to collect instructor feedback for improving this course and the Mathematics program. Information will also be used for program accreditation purposes.

I. Program Learning Outcomes Evaluations

Course Number/Name	MATH 472 Introduction to differential Geometry Sen			First 1434/1435			5		
Instructor	Dr. Abd El-Nasser Ghareeb								
The course listed above is designed for students to achieve the following outcomes at a Not At All, Low, Low- Medium, Medium-High or High level.									
Please mark (or type) High (5), Medium-High (4), Medium (3), Low-Medium (2), Low (1) or Not At All (0) indicating the level to which you believe, as an instructor, the students have achieved these outcomes in this course.									
Program Learning Out	comes	Relevant Activit	ties	5	4	3	2	1	0
a1. Apply fundamentals and c of mathematics.	concepts	- Lectures - assignments		5					
a2. Apply fundamentals and c General sciences and Comput		- assignments on logic statemen	ts			3			
a3. Realize Social and ethical	values.								0
b1. Read and construct mathe arguments and proofs.	matical	- Lectures - assignments			4				
b2. Apply critical thinking ski solve problems that can be mo mathematically.		- Lectures - assignments - Oral discussion		5					
c1. Work independently and with team	hin a	Divided students into groups a discussion with homework	nd using oral			3			
c2. Bear responsibility for difficultions.	ferent						2		
c3. Realize codes of ethics and importance.	d their								0
d1. Communicate a depth and of mathematical knowledge, borally and in writing.	ooth	- Lectures - assignments - Oral discussion			4				
d2. Ability to Organize, connection communicate mathematical and algorithmic ideas.		- Lectures - assignments			4				
d3. Critically interpret numeri graphical data.	ical and	- assignments on information of represented data				3			
e1. Use computer and its applications as an office too	ol	- assignments on Logical expre	ession			3			

II. Catalog Description, and Course Prerequisites Evaluations:

Based on your experiences in the course, please respond by circling the most appropriate number. Circle N/A for items that are not applicable, or if you have no opinion.

Catalog Description 1434-1435	 Theory of curves in R3-Regular curves, arc length and reparametrization and Natural parametrization. Serret-Frenet apparatus, Existence and uniqueness theorem for space curves and Bertrand curves. Involutes and evolutes, Local theory of surfaces, Simple surfaces and Coordinate transformations. Tangent vectors and tangent spaces, First and second fundamental forms and Normal and geodesic curvature. Weingarten map, Pricipal Gaussian and mean curvatures and Geodesics. 						
Course Prerequisites:	• Equations of Gauss and PMTH 112 + PMTH127	Circle ()ne (5=	-Stron		·ee;	
-	t the catalog description (above) is	(5)	4	3	2	1	N/A
2b. Do you believe that the appropriate for this cours	ne course prerequisites (above) are e?	5 (4) 3 2 1 N/				N/A	
2c. If not, please list an appropriate for this cou	ry prerequisites you believe are not urse.						

III. Textbook(s) and/or Lab Manuals (if applicable) Evaluations:

Textbook(s) and/or Lab Manuals (if applicable):	 R. Millman & G.Parker, Elements of differential Geometry. Manfredo Do Carmo: Differential Geometry of Curves and Surfaces, Birkhauser, Boston, 1992. Michael Spivak: Introduction to differential Geometry, Vol. 1, 3 Edition, Addison-Wesley, 1965. 	Circle C 1=Stron			C 2	ree;	
3a. In general, do you le textbook for this course	pelieve this to be an appropriate e?	(5)	4	3	2	1	N/A
3b. Was the organization course?	on of the textbook appropriate for this	5	(4)	3	2	1	N/A
3c. Was the level of the	e textbook appropriate for this course?	5	(4)	3	2	1	N/A

IV. Computer usage (if applicable) Evaluations:

Instructor Course Evaluation Form

Computer usage (if applicable):	Circle One (5=Strongly Agree; 1=Strongly Disagree)				ly	
5a. Was the use of computer well integrated with the course?	5	4	(3)	2	1	N/A
5b. Was the computer lab adequately equipped with well-maintained and updated computers?	5 4 3 2 (1)			N/A		
5c. Was the computer lab equipped with sufficient number of computers?	5	5	5	2	1	(N/A)
5d. Were the special software packages (MATLAB, SPSS, C+, FORTRAN, etc) available and accessible?	5	4	3	2	1	(N/A)
5e. Was adequate technical support available when needed?	5	4	3	2	1	(N/A)

المملكة العربية السعودية وزارة التعليم العال حامعة المجمعة كلية العلوم بالزلفي

المستوى: - الثامن تاريخ الامتحان: - 1435-7-19

اسم المادة: - مقدمة هندسة تفاضلية وقم ورمز المادة: МАТН 472 + МАТ 475-Z

Solution Manual

Question 1:

[10 marks]

(1) Find the length of the circular helix $r(u) = a \cos u \, i + a \sin u \, j + c \, u \, k$, $-\infty < u < \infty$, from (a,0,0) to $(a,0,2\pi c)$.

Solution. Clearly the limits of u are from cu = 0 to $cu = 2\pi c$ i.e. from u=0 to $u=2\pi$.

The equation of the circular helix is

 $\mathbf{r}(u) = a \cos u \mathbf{i} + a \sin u \mathbf{j} + c u \mathbf{k}$

 $\dot{\mathbf{r}} = \frac{d\mathbf{r}}{du} = -a \sin u \, \mathbf{i} + a \cos u \, \mathbf{j} + c \, \mathbf{k}$

 $|\dot{\mathbf{r}}(u)| = (a^2 \sin^2 u + a^2 \cos^2 u + c^2)^{1/2} = (a^2 + c^2)^{1/2}$ Therefore the length of the circular helix from (a, 0, 0) to $(a, 0.2\pi c)$ is $= \int_0^{2\pi} |\dot{\mathbf{r}}(u)| du = \int_0^{2\pi} \sqrt{(a^2 + c^2)} du$

$$= \int_0^{2\pi} |\dot{\mathbf{r}}(u)| du = \int_0^{2\pi} \sqrt{(a^2 + c^2)} du$$
$$= \sqrt{(a^2 + c^2)} [u]_0^{2\pi} = 2\pi \sqrt{(a^2 + c^2)}.$$

Again suppose s denotes the arc length from the point where u = 0 to any point u, we have

have

$$s = \int_{0}^{u} |\dot{\mathbf{r}}(u)| du$$

$$= \int_{0}^{u} \sqrt{(a^{2} + c^{2})} du = (a^{2} + c^{2})^{1/2} [u]_{0}^{u} = u (a^{2} + c^{2})^{1/2}$$

$$u = \frac{s}{(a^{2} + c^{2})^{1/2}}$$

$$u = \frac{s}{(a^2 + c^2)^{1/2}}$$

المملكة العربية السعودية وزارة التعليم العالي جامعة المحمعة كلية العلوم بالزلفي

المستوى: - الثامن تاريخ الامتحان: - 1435-7-19

اسم المادة: - مقدمة هندسة تفاضلية وقم ورمز المادة: MATH 472 + MAT 475-Z

(2) Show that the Serret-Frenet formulae can be written in the form t'=w imes t, $n' = w \times n, b' = w \times b.$

Solution. w is called Darbouxe vector of the curve.

We have from Frenet's formulae

$$t' = \kappa \mathbf{n} = \tau \mathbf{t} \times \mathbf{t} + \kappa \mathbf{b} \times \mathbf{t}$$
$$= (\tau \mathbf{t} + \kappa \mathbf{b}) \times \mathbf{t}$$

 $[:: t \times t = 0, b \times t = n]$

 $= (\tau t + \kappa b) \times n = w \times n$

$$b' = -\tau n = \tau (t \times b) + \kappa (b \times b)$$
$$= (\tau t + \kappa b) \times b = w \times n$$

 $[: b \times b = 0, -n = t \times b]$ = $(\tau t + \kappa b) \times b = w \times n$ where $w = \tau t + \kappa b$ from (1).

المملكة العربية السعودية وزارة التعليم العالى كلية العلوم بالزلفي

المستوى: - الثامن تاريخ الامتحان: - 1435-7-19

رقم ورمز المادة: MATH 472 + MAT 475-Z

اسم المادة: - مقدمة هندسة تفاضلية

Question 2:

[10 marks]

(1) Prove that a curve is uniquely determined except as to position in space when its curvature and torsion are given functions of its arc length (Uniqueness Theorem for space curves).

Proof: If possible let there be two curves C and C_1 having equal curvature κ and equal torsion τ for the same values of s. Let the suffix unity by used for quantities belonging to C_1 .

Now if C_1 is moved (without deformation) so that the two points on Cand C_1 corresponding to same value of s coincide. We have

and
$$C_1$$
 corresponding to same value of s coincide. We have
$$\frac{d}{ds}(\mathbf{t}_1 \cdot \mathbf{t}_1) = \mathbf{t} \cdot \kappa_1 \mathbf{n}_1 + \kappa \mathbf{n} \cdot \mathbf{t}_1$$

$$\frac{d}{ds}(\mathbf{t} \cdot \mathbf{t}_1) = \mathbf{t} \cdot \kappa \mathbf{n}_1 + \kappa \mathbf{n} \cdot \mathbf{t}_1 \quad [\because \kappa_1 = \kappa \text{ given}] \qquad \dots (1)$$

$$\frac{d}{ds}(\mathbf{n} \cdot \mathbf{n}_1) = \mathbf{n} \cdot (\tau \mathbf{b}_1 - \kappa \mathbf{t}_1) + (\tau \mathbf{b} - \kappa \mathbf{t}) \cdot \mathbf{n}_1 \quad \dots (2)$$

$$\frac{d}{ds}(\mathbf{b} \cdot \mathbf{b}_1) = \mathbf{b} \cdot (-\tau \mathbf{n}_1) + (-\kappa \mathbf{n}) \cdot \mathbf{b}_1$$
Adding equations (1), (2) and (3), we get
$$\frac{d}{ds}(\mathbf{t} \cdot \mathbf{t}_1 + \mathbf{n} \cdot \mathbf{n}_1 + \mathbf{b} \cdot \mathbf{b}_1) = 0.$$

$$\frac{d}{ds}(\mathbf{t} \cdot \mathbf{t_1} + \mathbf{n} \cdot \mathbf{n_1} + \mathbf{b} \cdot \mathbf{b_1}) = 0,$$
Which on integrating gives

which on integrating gives

 $\mathbf{t} \cdot \mathbf{t_1} + \mathbf{n} \cdot \mathbf{n_1} + \mathbf{b} \cdot \mathbf{b_1} = \text{constant}.$

If C_1 is moved in such a manner that at s = 0 the two triads (t, n, b) and (t_1, n_1, b_1) coincide. Then at that point $(t = t_1, n = n_1, b = b_1)$ and then the value of constant in eqn. (4) becomes 3. Thus $t \cdot t_1 + n \cdot n_1 + b \cdot b_1 = 3.$

But the sum of three cosines is equal to 3 if each angle is zero or is an integral multiple of 2π .

Thus for each pair of corresponding points

$$t \models t_1, n = n_1, b = b_1$$

Also $\mathbf{t} = \mathbf{t_1}$ gives $\mathbf{r'} = \mathbf{r_1'}$ i.e. $\frac{d}{ds}(\mathbf{r} - \mathbf{r_1}) = 0$, i.e. $\mathbf{r} - \mathbf{r_1} = \mathbf{a}$ (const. vector)

but as s = 0, $r - r_1 = 0$ or $r = r_1$ at all corresponding points and hence the two curves coincide or the two curves are congruent. This theorem is called uniqueness theorem.

المملكة العربية السعودية وزارة التعليم العالي جامعة المجمعة كلية العلوم بالزلفي

المستوى: - الثامن تاريخ الامتحان: - 1435-7-19

رقم ورمز المادة: MATH 472 + MAT 475-Z

اسم المادة:- مقدمة هندسة تفاضلية

(2) If a curve lies on a sphere, show that ho and σ are related by $rac{d}{ds}(\sigma
ho')+rac{
ho}{\sigma}=0$.

Solution. Necessary condition: Let the curve lie on a sphere then to prove the given condition. Now the sphere will be osculating sphere for every point. The radius R of the osculating sphere is given by

$$R^2 = \rho^2 + \sigma^2 \rho'^2$$

 $R^2 = \rho^2 + \sigma^2 \rho'^2$ Differentiating w.r.t. 's', we get

ing w.r.t. s, we get
$$0 = \rho \rho' + \sigma^2 \rho' \rho'' + \sigma \sigma' \rho'^2$$

Dividing by
$$\rho'\sigma$$
, we get
$$0 = \frac{\rho}{\sigma} + \rho''\sigma + \sigma'\rho'$$

$$0 = \frac{\rho}{\sigma} + \frac{d}{ds}(\sigma\rho') \qquad \text{or} \qquad \frac{\rho}{\sigma} + \frac{d}{ds}\left(\frac{\rho'}{\tau}\right) = 0$$

$$0 = \frac{\rho}{\sigma} + \frac{d}{ds} (\sigma \rho')$$

$$r = \frac{\rho}{\sigma} + \frac{d}{ds} \left(\frac{\rho'}{\sigma} \right)$$

#800 W.V.

المملكة العربية السعودية وزارة التعليم العالى كلية العلوم بالزلفي

المستوى: - الثامن تاريخ الامتحان: - 1435-7-19

اسم المادة: - مقدمة هندسة تفاضلية رقم ورمز المادة: MATH 472 + MAT 475-Z

Question 3:

[10 marks]

(1) Find the plane that has three point contact at the origin with the curve $x = u^4 - 1$, $y = u^3 - 1$, $z = u^2 - 1$.

Solution. Let the equation of the plane at the origin be
$$lx + my + nz = 0 \qquad(1)$$
The equations of the given curve are
$$x = u^4 - 1, y = u^3 - 1, z = u^2 - 1 \qquad(2)$$
At the origin,
$$u^4 - 1 = 0, u^3 - 1 = 0, u^2 - 1 = 0$$
Clearly $u = 1$ satisfies all of these three equations.

At the origin, we have $u = 1$.

Now the points of intersection of the curve (2) and the surface (1) are given by the zeroes of the function
$$F(u) = l(u^4 - 1) + m(u^3 - 1) + n(u^2 - 1)$$
or
$$F(u) = lu^4 + mu^3 + nu^2 - l - m - n \qquad(3)$$
For three point contact, we should have $F'(u) = 0$,
$$F''(u) = 0 \qquad \text{where } F'(u) = dF/du.$$
Now
$$F'(u) = 4lu^3 + 3mu^2 + 2nu = 0 \qquad(4)$$
and
$$F''(u) = 12lu^2 + 6mu + 2n = 0 \qquad(5)$$
At the origin i.e. at $u = 1$, the equation (4) and (5) becomes
$$4l + 3m + 2n = 0, \qquad 12l + 6m + 2n = 0$$
Solving, $m = -(8/3) l, n = 2l$
Putting values in (1), the equation of the required plane is given by
$$lx - (8/3) ly + 2lz = 0 \qquad \text{or} \qquad 3x - 8y + 6z = 0$$

المملكة العربية السعودية وزارة التعليم العالي جامعة المجمعة كلية العلوم بالزلفي

المستوى: - الثامن تاريخ الامتحان: - 1435-7-19

اسم المادة: - مقدمة هندسة تفاضلية ورمز المادة: MATH 472 + MAT 475-Z

(2) Calculate the curvature and the torsion of the cubic curve given by $r=(u,u^2,u^3)$.

Solution. Here
$$\mathbf{r} = (u, u^2, u^3)$$

$$\dot{\mathbf{r}} = (1, 2u, 3u^2); \ \ddot{\mathbf{r}} = (0, 2, 6u), \ \ddot{\mathbf{r}} = (0, 0, 6)$$

$$\dot{\mathbf{r}} \times \ddot{\mathbf{r}} = (\mathbf{i} + 2u \, \mathbf{j} + 3u^2 \, \mathbf{k}) \times (2\mathbf{j} + 6u \, \mathbf{k})$$

$$= 2\mathbf{k} - 6u \, \mathbf{j} + 12u^2 \, \mathbf{i} - 6u^2 \, \mathbf{i}$$

$$= 6u^2 \, \mathbf{i} - 6u \, \mathbf{j} + 2\mathbf{k} = (6u^2, -6u, 2)$$

$$= 2 (3u^2, -3u, 1)$$

$$\dot{\mathbf{r}} \times \ddot{\mathbf{r}} = 2 (9u^4 + 9u^2 + 1)^{1/2}.$$
Also
$$\dot{\mathbf{r}}, \ \ddot{\mathbf{r}}, \ \ddot{\mathbf{r}} = \dot{\mathbf{r}} \times \ddot{\mathbf{r}} \cdot \ddot{\mathbf{r}} = 2 (3u^2, -3u, 1) \cdot (0, 0, 6)$$

$$= 2 (0 + 0 + 6) = 12$$

$$\dot{\mathbf{k}} = \frac{|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|}{|\dot{\mathbf{r}}|^3} = \frac{2 (9u^4 + 9u^2 + 1)^{1/2}}{(1 + 4u^2 + 9u^4)^{3/2}}$$
and
$$\tau = \frac{|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|}{|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|^2} = \frac{12}{4 (9u^4 + 9u^2 + 1)}$$
or
$$\tau = \frac{3}{(9u^4 + 9u^2 + 1)}$$
...(2)

المملكة العربية السعودية وزارة التعليم العالي جامعة المجمعة كلية العلوم بالزلفي

المستوى: - الثامن تاريخ الامتحان: - 1435-7-19

رقم ورمز المادة: MATH 472 + MAT 475-Z

اسم المادة: - مقدمة هندسة تفاضلية

Question 4:

[10 marks]

(1) If ${\it C}$ is the original curve and ${\it C}_1$ is the locus of the center of the circle of curvature. Prove that the tangent to ${\it C}_1$ lies in the normal plane at ${\it C}$.

Proof: Let unity as suffix be used to distinguish quantities belonging to C_1 .

(i) If c is the position vector of the centre of circle of curvature of C we have

$$\mathbf{c} = \mathbf{r} + \rho \mathbf{n}.$$
Differentiating w.r.t. 's₁'
$$\frac{d\mathbf{c}}{ds_1} = \mathbf{t}_1 = (\mathbf{r} + \rho \mathbf{n})' \frac{ds}{ds_1} \qquad \text{or} \qquad \mathbf{t}_1 = (\mathbf{r}' + \rho \mathbf{n}' + \rho' \mathbf{n}) \left(\frac{ds}{ds_1} \right)$$
or
$$\mathbf{t}_1 = [\mathbf{t} + \rho' \mathbf{n} + \rho (\tau \mathbf{b} - \kappa \mathbf{t})] \left(\frac{ds}{ds_1} \right) \qquad [\because \mathbf{n}' = \tau \mathbf{b} - \kappa \mathbf{t}]$$
or
$$\mathbf{t}_1 = (\rho' \mathbf{n} + \rho \tau \mathbf{b}) \left(\frac{ds}{ds_1} \right) \qquad [\because \rho \kappa = 1]$$

This relation shows that the tangent to C_1 lies in the plane containing \mathbf{n} and \mathbf{b} i.e. normal plane to C and is inclined to \mathbf{n} at an angle α given by

$$\tan \alpha = \frac{\rho \tau}{\rho'} = \frac{\rho}{\sigma \rho'}$$
(ii) If κ is constant *i.e.* ρ is constant, then $\rho' = 0$ from equation (1) we get

Taking module of both sides, we get

$$1 = \rho \tau \frac{ds}{ds_1} \qquad i.e. \qquad \frac{ds}{ds_1} = \frac{1}{\rho \tau} \qquad \dots (3)$$
from (2) and (3) $t_1 = b$

Differentiating w.r.t. 's₁'

or
$$\frac{d\mathbf{t_1}}{ds_1} = \mathbf{b}' \frac{ds}{ds_1}$$
 or $\frac{d\mathbf{t_1}}{ds_1} = \kappa_1 \, \mathbf{n_1} = -\tau \, \mathbf{n} \, \frac{ds}{ds_1}$ or $\kappa_1 \, \mathbf{n_1} = -\tau \, \mathbf{n} \, \frac{ds}{ds_1}$ or $\kappa_1 \, \mathbf{n_1} = -\kappa \, \mathbf{n}$.

This clearly shows that n_1 is parallel to n and choosing the direction of n_1 opposite to that of n such that $n_1 = -n$. Therefore from (4); $\kappa_1 = \kappa$.

المملكة العربية السعودية وزارة التعليم العالي جامعة المجمعة كلية العلوم بالزلفي

المستوى: - الثامن تاريخ الامتحان: - 1435-7-19

اسم المادة: - مقدمة هندسة تفاضلية رقم ورمز المادة: MATH 472 + MAT 475-Z

(2) For a spherical curve, prove that $ho + rac{d^2
ho}{d\psi^2} = 0$.

Solution. A spherical curve means a curve lying on a sphere. We have proved in Ex. 1 (a) above that for a spherical curve,

That the proved in Ex. 1 (a) above that for a spherical curve,
$$\frac{d}{ds}(\sigma\rho') + \frac{\rho}{\sigma} = 0$$
or
$$\frac{d}{ds}\left(\frac{ds}{d\psi}\frac{d\rho}{ds}\right) + \frac{\rho}{\sigma} = 0$$
or
$$\frac{d}{d\psi}\left(\frac{d\rho}{d\psi}\right)\frac{d\psi}{ds} + \rho \cdot \frac{d\psi}{ds} = 0$$
or
$$\frac{d^2\rho}{d\psi^2} + \rho = 0.$$
for
$$\frac{d^2\rho}{d\psi^2} + \rho = 0.$$

أنتهت نموذج الإجابة

كلية العلوم بالزلفي

نموذج تحويل العلامات النهائي من منوي الى أحرف لطلبة البكالوريوس

240/1545	ثاني
----------	------

الدراسى	الفصل
	-

الرقم

MATH 472	رقم المادة	قسم الرياضيات	القسم
مقدمة في الهندسة التفاضلية	اســـم المـــادة	د. عبدالناصر غريب عبدالرحمن	استاذ المادة
0	عدد الطلبة الغائبين عن التهائي		عدد الطلبة المسجلين
2	عدد الطلبة الراسبين	25	عدد الطلبة الناجحين
F	العلامة الدنيا	2.85	متوسط الدرجات
92.59%	نسبة النجاح	A+	الدرجة العليــــا

	Percentage	SUM	Count	ТО	From	Average	
	3.7037037	5	1	100	95	A+	
	7.40740741	9.5	2	94	90	Α	
Þ	0	0	0	89	85	B+	
Average	3.7037037	4	1	84	80	В	
rag	14.8148148	14	4	79	75	C+	
е	25.9259259	21	7	74	70	С	
	11.11111111	7.5	3	69	65	D+	
	25.9259259	14	7	64	60	D	
	7.40740741	2	2	59	0	F	
2.85	<u>100</u>	77	<u>27</u>		Total Studen		

8					7		7	
7								
6					-		-	
5				4	-			
4				4	-	3	-	
3				_	_	<u> </u>	_	
2	2				_		┸	2
1			1		•			
1		0						
0	^	D.	D D					
A+	Α	B+	В	C+	С	D+	D	F

	.,
<u> </u>	جة العلي
التقدير	العلامة
D	61
D	63
F	47
D	60 72
С	72
D+	68
F	40
D+	66
С	70
D	62
С	72
Α	91 75
C+	75
D	60
С	60 72
В	81
D+	65
A+	96
С	96 73
Α	90
D+ C D C C A C+ C C+ C+ C+ C+	90 75
C+	77
С	71
C+	77
C+ CD	77 72 60
D	60
D	60

المملكة العربية السعودية وزارة التعليم العالي جامعة المجمعة كلية العلصوم بالزلفي قسم الرياضيات

Student Course Evaluation Form

The purpose of this evaluation is to collect instructor feedback for improving this course and the Mathematics program. Information will also be used for program accreditation purposes.

I. Program Learning Outcomes Evaluations

Course Number/Name	MATH 472 Introduction to Differential Geometry Semester Sec		Second 1434/14				/14:	35				
Instructor	Dr. Abd El-Nasser Ghareeb											
Student Name		Student ID										
The course listed above is de Low, Low- Medium, Medium	llowing outcomes	s at a Not At All,										
	5), Medium-High (4), Medium (3), I which you believe, as an instructor,											
	ram Learning Outcomes		5	4	3	2	1	0				
a1. Apply fundamentals an	d concepts of mathematics.											
a2. Apply fundamentals an	d concepts General sciences and C	Computer skills.										
a3. Realize Social and ethi	cal values.											
b1. Read and construct ma	thematical arguments and proofs.											
b2. Apply critical thinking mathematically.	skills to solve problems that can b	e modeled										
c1. Work independently and	within a team											
c2. Bear responsibility for	different situations.											
c3. Realize codes of ethics	and their importance.											
d1. Communicate a depth and breadth of mathematical knowledge, both orally and in writing.												
d2. Ability to Organize, connect and communicate mathematical and algorithmic ideas.												
d3. Critically interpret numerical and graphical data.												
e1. Use computer and its a	pplications as an office tool											

II. Catalog Description, and Course Prerequisites Evaluations:

Based on your experiences in the course, please respond by circling the most appropriate number. Circle N/A for items that are not applicable, or if you have no opinion.

Catalog Description 1434-1435	 Theory of curves in R3-Regular curves, arc length and reparametrization and Natural parametrization. Serret-Frenet apparatus, Existence and uniqueness theorem for space curves and Bertrand curves. Involutes and evolutes, Local theory of surfaces, Simple surfaces and Coordinate transformations. Tangent vectors and tangent spaces, First and second fundamental forms and Normal and geodesic curvature. Weingarten map, Pricipal Gaussian and mean curvatures and Geodesics. Equations of Gauss and Godazzi-Mainardi. 								
Course	PMTH 112 + PMTH127	Circle (One (5=	=Stron	gly Ag	ree;			
Prerequisites:		1=Strongly disagree)							
2a. Do you believe that	the catalog description (above) is	5	4	3	2	1	N/A		
accurate for this course									
2b. Do you believe that the course prerequisites (above) are			4	3	2	1	N/A		
appropriate for this cours									
2c. If not, please list any prerequisites you believe are not appropriate for this course.									
appropriate for this cot	usc.								

III. Textbook(s) and/or Lab Manuals (if applicable) Evaluations:

Textbook(s) and/or Lab Manuals (if applicable):	 R. Millman & G.Parker, Elements of differential Geometry. Manfredo Do Carmo: Differential Geometry of Curves and Surfaces, Birkhauser, Boston, 1992. Michael Spivak: Introduction to differential Geometry, Vol. 1, 3 Edition, Addison-Wesley, 1965. 	Circle One (5=Strongly Agree; 1=Strongly Disagree)						
3a. In general, do you believe this to be an appropriate textbook for this course?		5	4	3	2	1	N/A	
3b. Was the organization of the textbook appropriate for this course?		5	4	3	2	1	N/A	
3c. Was the level of the	e textbook appropriate for this course?	5	4	3	2	1	N/A	

IV. Computer usage (if applicable) Evaluations:

Computer usage (if applicable):	Circle One							
	(5=Strongly Agree; 1=Strongly Disagree)					y		
4a. Was the use of computer well integrated with the course?	5	4	3	2	1	N/A		
4b. Was the computer lab adequately equipped with well-	5	4	3	2	1	N/A		

Student Course Evaluation Form

maintained and undated computers?						
4c. Was the computer lab equipped with sufficient number of	5	5	5	2	1	N/A
computers?						
4d. Were the special software packages (MATLAB,	5	4	3	2	1	N/A
SPSS, C+, FORTRAN, etc) available and accessible?						
4e. Was adequate technical support available when needed?	5	4	3	2	1	N/A