Kingdom of Saudi Arabia
Ministry of Higher Education
Majmaah University
Zulfi, College of Sciences
Mathematics Department

COURSE CLASSIFICATION FORM

Course Number/Name		MATH 472 Differential Geometry	
Prepared by		Dr. Abd El-Nasser Ghareeb	
Program Learning Outcomes	$\begin{aligned} & \hline \text { Levels* } \\ & (0,1,2, \\ & \mathbf{3 , 4 , 5)} \\ & \hline \end{aligned}$	Relevant Activities	Assessment Methods/Metrics
a1. Apply fundamentals and concepts of mathematics.	5	- Lectures - assignments	- 3 Midterm and final exam - Home work
a2. Apply fundamentals and concepts General sciences and Computer skills.	3	- assignments on logic statements	- 1 Midterm and final exam - Home work
a3. Realize Social and ethical	0		-
b1. Read and construct mathematical arguments and nronfs.	4	- Lectures - assignments	Home work
b2. Apply critical thinking skills to solve problems that can be modeled mathematically.	5	$\begin{aligned} & \hline \text { Lectures } \\ & \text { - assignments } \\ & \text { - Oral discussion } \end{aligned}$	- 3 Midterm and final exam+ Home work
c1. Work independently and within a team	3	Divided students into groups and using oral discussion with homework	- Home work
c2. Bear responsibility for different situations.	2		- Quizzes
c3. Realize codes of ethics and their importance.	0		
d1. Communicate a depth and breadth of mathematical knowledge, both orally and in writing.	4	$\begin{aligned} & \text { Lectures } \\ & \text { - assignments } \\ & \text { - Oral discussion } \end{aligned}$	- 3 Midterm + final exam - Home work - Quizzes
d2. Ability to Organize, connect and communicate mathematical and algorithmic ideas.	4	- Lectures - assignments	- Home work - Quizzes
d3. Critically interpret numerical and graphical data.	3	- assignments on information data and represented data	- Home work - Quizzes
e1. Use computer and its applications as an office tool	3	- assignments on Logical expression	Home work Quizzes

* Please mark (or type) High (5), Medium-High (4), Medium (3), Low-Medium (2), Low (1) or Not At All (0) indicating the level to which you believe, as an instructor, the students have achieved these outcomes in this course.

Kingdom of Saudi Arabia Ministry of Higher Education

Majmaah University
Zulfi, College of Sciences Mathematics Department

ärn? Majmaah University

الـــــلكـة الـعربيـة الـسـعوديـة
وزارة الـتـعليـم الـعــلــلـي
جـامـعـة الـمـجـمـعـة
كليـــة العلـــــــــوم بالـزلفـي
قسم الرياضيات

Course Objectives and Outcomes

Course Number: MATH 472 Course Name: Introduction to Differential Geometry Prepared by: Dr. Abd El-Nasser Ghareeb
 Table 1: Relationship of course objectives/outcomes with PLO and ASIIN Criteria

Course Objectives:	Course Outcomes:	ASIIN	PLO
Have the knowledge of Theory of curves in R, Regular curves, arc length and reparametrization and Natural parametrization.	Define and recognize the Theory of curves in R, Regular curves, arc length and reparametrization and Natural parametrization.	$\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{m}$	
	Improve and outline the logical thinking.	b, c	
	Illustrate how to communicating with: Peers, Lecturers and Community.	1, n	
Have the knowledge of SerretFrenet apparatus, Existence and uniqueness theorem for space curves and Bertrand curves.	Define and recognize the Serret-Frenet apparatus, Existence and uniqueness theorem for space curves and Bertrand curves.	$\begin{gathered} \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~g} \\ \mathrm{~m}, \mathrm{j} \end{gathered}$	
	Shown the ability of working independently and with groups.	n	
	Illustrate how take up responsibility.	1, n	
Studying the Involutes and evolutes, Local theory of surfaces, Simple surfaces-Coordinate transformations, Tangent vectors \& tangent spaces, First and second fundamental forms.	Define and recognize the Involutes and evolutes, Local theory of surfaces, Simple surfacesCoordinate transformations, Tangent vectors \& tangent spaces, First and second fundamental forms.	$\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{h}$	
	ability to write Mathematical equations in a correct mathematical way	$\mathrm{a}, \mathrm{j}, \mathrm{g}$	
Studying the normal and geodesic curvature.	Define and recognize the normal and geodesic curvature.	$\mathrm{a}, \mathrm{c}, \mathrm{h}$	
	Appraise how to Use the computer skills and library.	d, h	
	Illustrate how to Search the internet and using software programs to deal with problems	d, h	
Have the knowledge of Weingarten map.	Define and recognize the Weingarten map, Pricipal Gaussian and mean curvatures.	a, e, i	
	interpret how to Know the Weingarten map, Pricipal Gaussian and mean curvatures using the internet	$\mathrm{k}, \mathrm{h}, \mathrm{g}$	
Studying principal Gaussian and mean curvatures	Define and recognize the principal Gaussian and mean curvatures	a, i	
	interpret how to Know the principal Gaussian	h, k	

Course Objectives and Outcomes

	and mean curvatures using the internet		
Studying the Geodesics- Equations of Gauss and Godazzi-Mainardi.	Define and recognize Geodesics- Equations of Gauss and Godazzi-Mainardi theory	a, i	interpret how to Know the Geodesics-Equations of Gauss and Godazzi-Mainardi using the internet

Table 2: Methods of assessment of course syllabus

Outcome of ASIIN

a Graduates have sound mathematical knowledge. They have a profound overview of the contents of fundamental mathematical disciplines and are able to identify their correlations.
b Graduates are able to recognise mathematics-related problems, assess their solvability and solve them within a specified time frame.
c Graduates have a basic ability to work in a scientific way. They are in particular able to formulate mathematical hypotheses and have an understanding of how such hypotheses can be verified or falsified using mathematical methods.
d Graduates can flexibly apply mathematical methods of fundamental component areas of mathematics and are able to transfer the findings obtained to other component areas or applications.
e Graduates have abstraction ability and are able to recognise analogies and basic patterns
f Graduates are able to think in a conceptual, analytical and logical manner.
g Graduates have an extensive comprehension of the significance of mathematical modelling. Are able to create mathematical models for mathematical problems as well as for problems in other areas of science or everyday life, and have a selection of problem solving strategies at their disposal.
h Graduates can use basic methods of computer-aided simulation, mathematical software and programming to solve mathematical problems
i Graduates are in a position to solve more extensive mathematical
j Graduates can classify, recognise, formulate and solve mathematics-related problems
k Graduates use electronic media competently
1 Graduates can implement lifelong learning strategies. A prerequisite for this is that the students are per-severing and that they have developed persistence.
m Graduates can recognise, formulate, classify and solve problems in a mathematical context
n Graduates can communicate, possibly also in a foreign language, and contribute their work effectively in teams

Kingdom of Saudi Arabia
Ministry of Higher Education
Majmaah University
Zulfi, College of Sciences
Mathematics Department

Instructor Course Evaluation Form

The purpose of this evaluation is to collect instructor feedback for improving this course and the Mathematics program. Information will also be used for program accreditation purposes.

I. Program Learning Outcomes Evaluations

Course Number/Name ${ }^{\text {M }}$ MATH 472	MATH 472 Introduction to differential Geometry	Semester	First 1434/1435					
Instructor ${ }^{\text {a }}$ Dr. Ab	d El-Nasser Ghareeb							
The course listed above is designed for students to achieve the following outcomes at a Not At All, Low, Low- Medium, Medium, Medium-High or High level.								
Please mark (or type) High (5), Medium-High (4), Medium (3), Low-Medium (2), Low (1) or Not At All (0) indicating the level to which you believe, as an instructor, the students have achieved these outcomes in this course.								
Program Learning Outcomes	Relevant Activit	ties	5	4	3	2	1	0
a1. Apply fundamentals and concepts of mathematics.	- Lectures - assignments		5					
a2. Apply fundamentals and concepts General sciences and Computer skills.	- assignments on logic statement				3			
a3. Realize Social and ethical values.								0
b1. Read and construct mathematical arguments and proofs.	- Lectures - assignments			4				
b2. Apply critical thinking skills to solve problems that can be modeled mathematically.	- Lectures - assignments - Oral discussion		5					
c1. Work independently and within a team	Divided students into groups and discussion with homework	d using oral			3			
c2. Bear responsibility for different situations.						2		
c3. Realize codes of ethics and their importance.								0
d1. Communicate a depth and breadth of mathematical knowledge, both orally and in writing.	- Lectures - assignments - Oral discussion			4				
d2. Ability to Organize, connect and communicate mathematical and algorithmic ideas.	- Lectures - assignments			4				
d3. Critically interpret numerical and graphical data.	- assignments on information represented data	data and			3			
e1. Use computer and its applications as an office tool	- assignments on Logical expression				3			

II. Catalog Description, and Course Prerequisites Evaluations:

Based on your experiences in the course, please respond by circling the most appropriate number. Circle N/A for items that are not applicable, or if you have no opinion.

Catalog Description 1434-1435	- Theory of curves in R3-Regular curves, arc length and reparametrization and Natural parametrization. - Serret-Frenet apparatus, Existence and uniqueness theorem for space curves and Bertrand curves. - Involutes and evolutes, Local theory of surfaces, Simple surfaces and Coordinate transformations. - Tangent vectors and tangent spaces, First and second fundamental forms and Normal and geodesic curvature. - Weingarten map, Pricipal Gaussian and mean curvatures and Geodesics. - Equations of Gauss and Godazzi-Mainardi.						
Course Prerequisites:	PMTH 112 + PMTH127	Circle One (5=Strongly Agree; 1=Strongly disagree)					
2a. Do you believe that the catalog description (above) is accurate for this course?		(5)	4	3	2	1	N/A
2 b. Do you believe that the course prerequisites (above) are appropriate for this course?		5	(4)	3	2		N/A
2c. If not, please list any prerequisites you believe are not appropriate for this course.							

III. Textbook(s) and/or Lab Manuals (if applicable) Evaluations:

Textbook(s) and/or Lab Manuals (if applicable):	- R. Millman \& G.Parker, Elements of differential Geometry. - Manfredo Do Carmo: Differential Geometry of Curves and Surfaces, Birkhauser, Boston, 1992. - Michael Spivak: Introduction to differential Geometry, Vol. 1, 3 Edition, Addison-Wesley, 1965.	$\begin{aligned} & \text { Circle } \\ & \text { 1=Str } \end{aligned}$	$\begin{aligned} & \text { e }(5= \\ & \text { ly } D i \end{aligned}$	trol	$\overline{\mathrm{y} \mathrm{~A}}$		
3a. In general, do you believe this to be an appropriate textbook for this course?		(5)	4	3	2	1	N/A
3b. Was the organization of the textbook appropriate for this course?		5	(4)	3	2	1	N/A
3c. Was the level of the textbook appropriate for this course?		5	(4)	3	2	1	N/A

IV. Computer usage (if applicable) Evaluations:

Instructor Course Evaluation Form

| Computer usage (if applicable): | Circle One
 (5=Strongly Agree;
 Disagree) | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Solution Manual

Question 1:
(1) Find the length of the circular helix $r(u)=a \cos u \boldsymbol{i}+a \sin u \boldsymbol{j}+\boldsymbol{c} \boldsymbol{u} \boldsymbol{k}$, $-\infty<\boldsymbol{u}<\infty$, from $(a, 0,0)$ to $(a, 0,2 \pi c)$.

Solution. Clearly the limits of u are from $c u=0$ to $c u=2 \pi c$ i.e. from

$$
u=0 \text { to } u=2 \pi
$$

The equation of the circular helix is

$$
\mathbf{r}(u)=a \cos u \mathbf{i}+a \sin u \mathbf{j}+c u \mathbf{k}
$$

$$
\dot{\mathbf{r}}=\frac{d \mathbf{r}}{d u}=-a \sin u \mathbf{i}+a \cos u \mathbf{j}+c \mathbf{k}
$$

$$
|\dot{\mathbf{r}}(u)|=\left(a^{2} \sin ^{2} u+a^{2} \cos ^{2} u+c^{2}\right)^{1 / 2}=\left(a^{2}+c^{2}\right)^{1 / 2}
$$

Therefore the lengit of the circular helix from $(a, 0,0)$ to $(a, 02 \pi c)$ is

$$
\begin{aligned}
& =\int_{0}^{2 \pi}|r(u)| d u=\int_{0}^{2 \pi} \sqrt{ }\left(a^{2}+c^{2}\right) d u \\
& =\sqrt{\left(a^{2}+c^{2}\right)[u]_{0}^{2 \pi}=2 \pi \sqrt{ }\left(a^{2}+c^{2}\right)}
\end{aligned}
$$

Again suppose s denotes the arc length from the point where $u=0$ to any point u, we have

$$
\begin{array}{rlrl}
& s & =\int_{0}^{u}|\dot{\mathbf{r}}(u)| d u \\
& =\int_{0}^{u} \sqrt{\left(a^{2}+c^{2}\right) d u=\left(a^{2}+c^{2}\right)^{1 / 2}[u]_{0}^{u}=u\left(a^{2}+c^{2}\right)^{1 / 2}} \\
\therefore \quad u & =\frac{s}{\left(a^{2}+c^{2}\right)^{1 / 2}}
\end{array}
$$

Kingdom of Saudi Arabia
بسم الله الرحمن الرحيم
Ministry of Higher Education
Majmaah University
College of Sciences in Alzulfi

جامعهـة المجمعة

الـمــلكـة الـعربـبـة الســـوديـة
 كلية العلوم باللزلفي

السم المادة:- مقدمة هندسة تفاضلية \quad رقم ورمز المادة: MATH 472 + MAT 475-Z $19-7-1435$ - المستوى:- الثّامن تاريخ الامتحان:
(2) Show that the Serret-Frenet formulae can be written in the form $\boldsymbol{t}^{\prime}=\boldsymbol{w} \times \boldsymbol{t}$, $\boldsymbol{n}^{\prime}=\boldsymbol{w} \times \boldsymbol{n}, \boldsymbol{b}^{\prime}=\boldsymbol{w} \times \boldsymbol{b}$.

Solution. w is called Darbouxe vector of the curve.
Whe have from Frenet's formulae

$$
\begin{array}{rlrl}
\mathbf{t}^{\prime} & =\kappa \mathbf{n}=\tau \mathbf{t} \times \mathbf{t}+\mathbf{k} \mathbf{b} \times \mathbf{t} & {[\because \mathbf{t} \times \mathbf{t}=0, \mathbf{b} \times \mathbf{t}=\mathbf{n}]} \\
& =(\tau \mathbf{t}+\mathbf{k} \mathbf{b}) \times \mathbf{t}
\end{array}
$$

$$
=(\tau t+k \mathbf{b}) \times \mathbf{n}=\mathbf{w} \times \mathbf{n},
$$

$$
\begin{aligned}
\mathbf{b}^{\prime} & =-\tau \mathbf{n}=\tau(t \times b)+\kappa(b \times b) \quad[\because b \times b=0,-n=t \times b] \\
& =(\tau t+k b) \times b=w \times \mathbf{n}
\end{aligned} \quad \text { where } w=\tau t+k b \text { from }(1) .
$$

$$
=(\tau \mathbf{t}+\mathbf{k} \mathbf{b}) \times \mathbf{b}=\mathbf{w} \times \mathbf{n} \quad \text { where } \mathbf{w}=\tau \mathbf{t}+\mathbf{k} \mathbf{b} \text { from (1). }
$$

جامعــة المجمعة
Majmaiah Universtiy

Question 2:

(1) Prove that a curve is uniquely determined except as to position in space when its curvature and torsion are given functions of its arc length (Uniqueness Theorem for space curves).

Proof : If possible let there be two curves C and C_{1} having equal curvature κ and equal torsion τ for the same values of s. Let the suffix unity by used for quantities belonging to C_{1}.

Now if C_{1} is moved (without deformation) so that the two points on C and C_{1} corresponding to same value of s coincide. We have

$$
\begin{align*}
& \frac{d}{d s}\left(t_{1} \cdot t_{1}\right)=t \cdot \kappa_{1} n_{1}+\kappa n_{1} t_{1} \\
& \frac{d}{d s}\left(\mathbf{t} \cdot \mathbf{t}_{1}\right)=\mathbf{t} \cdot \kappa \mathbf{n}_{1}+\kappa \mathbf{n} \cdot \mathbf{t}_{\mathbf{1}} \\
& {\left[\because \kappa_{1}=\kappa \text { given }\right]} \tag{1}\\
& \frac{d}{d s}\left(\mathbf{n}_{1} \mathbf{n}_{1}\right)=\mathbf{n} \cdot\left(\tau \mathbf{b}_{1}-\kappa \mathbf{t}_{\mathbf{1}}\right)+(\tau \mathbf{b}-\mathrm{k} \mathbf{t}), \mathbf{n}_{1} \\
& \frac{d}{d s}\left(\mathbf{b} \cdot \mathbf{b}_{1}\right)=\mathbf{b}\left(-\tau \mathbf{n}_{1}\right)+(-\kappa \mathbf{n}) \cdot \mathbf{b}_{1} \tag{2}
\end{align*}
$$

Adding equations (1), (2) and (3), we gel

$$
\frac{d}{d s}\left(\mathbf{t} \cdot \mathbf{t}_{1}+\mathrm{m} \cdot \mathrm{~m}_{1}+\mathbf{b} \cdot \mathrm{b}_{1}\right)=0
$$

which on integrating gives

$$
t_{1} \mathrm{t}_{1}+\mathrm{n} \cdot \mathrm{n}_{1}+\mathrm{b} \cdot \mathrm{~b}_{1}=\text { constant }
$$

If C_{1} is moved in such a manner that at $s=0$ the two triads t, n, D and t_{1}, n_{1}, b_{1}) coincide. Then at that point $t=t_{1}, n=n_{1}, b=b_{1}$ and then the value of constant in eqn. (4) becomes 3. $t=t_{1}, n=n_{1}, b=b_{1}$ and then the value Thus

$$
t_{1}+n_{1} n_{1}+b, b_{1}=3
$$

But the sum of three cosines is equal to 3 if each angle is zero or is an
Thus for each pair of corresponding points

$$
t=\mathbf{t}_{1}, \mathrm{n}=\mathbf{n}_{1}, \mathrm{~b}=\mathbf{b}_{1}
$$

Also $\mathbf{t}=\mathbf{t}_{\mathbf{1}} \quad$ gives $\mathbf{r}^{\prime}=\mathbf{r}_{\mathbf{1}}{ }^{\prime}$
i.e. $\quad \frac{d}{d s}\left(\mathbf{r}-\mathbf{r}_{1}\right)=0, \quad$ i.e. $\quad \mathbf{r}-\mathbf{r}_{1}=\mathbf{a}$ (const. vector)
but as $s=0, \mathbf{r}-\mathbf{r}_{1}=0$ or $\mathbf{r}=\mathbf{r}_{\mathbf{1}}$ at all corresponding points and hence the two curves coincide or the two curves are congruent. This theorem is called uniqueness theorem.

المستوى:- الثامن تاريخ الامتحان:- 1435-7-19 رقمورمز المادة: MATH 472 + MAT 475-Z

اسم المادة:- مقدمـة هندسة تفاضلية
(2) If a curve lies on a sphere, show that ρ and σ are related by $\frac{d}{d s}\left(\sigma \rho^{\prime}\right)+\frac{\rho}{\sigma}=0$.

Solution. Necessary condition : Let the curve lie on a sphere then to prove the given condition. Now the sphere will be osculating sphere for every point. The radius R of the osculating sphere is given by

$$
\begin{equation*}
R^{2}=\rho^{2}+\sigma^{2} \rho^{\prime 2} \tag{1}
\end{equation*}
$$

Differentiating w.r.t. ' s ', we get

$$
0=\rho \rho^{\prime}+\sigma^{2} \rho^{\prime} \rho^{\prime \prime}+\sigma \sigma^{\prime} \rho^{\prime 2}
$$

Dividing by $\rho^{\prime} \sigma$, we get

$$
\begin{aligned}
& 0=\frac{\rho}{\sigma}+\rho^{\prime \prime} \sigma+\sigma^{\prime} \rho^{\prime} \\
& 0=\frac{\rho}{\sigma}+\frac{d}{d s}\left(\sigma \rho^{\prime}\right) \quad \text { or } \quad \frac{\rho}{\sigma}+\frac{d}{d s}\left(\frac{\rho^{\prime}}{\tau}\right)=0
\end{aligned}
$$

Question 3:

(1) Find the plane that has three point contact at the origin with the curve $x=u^{4}-1, y=u^{3}-1, z=u^{2}-1$.

Solution. Let the equation of the plane at the origin be

$$
\begin{equation*}
l x+m y+n z=0 \tag{1}
\end{equation*}
$$

The equations of the given curve are

$$
\begin{equation*}
x=u^{4}-1, y=u^{3}-1, z=u^{2}-1 \tag{2}
\end{equation*}
$$

At the origin, $\quad u^{4}-1=0, u^{3}-1=0, u^{2}-1=0$
Clearly $u=1$ satisfies all of these three equations.
$\therefore \quad$ At the origin, we have $u=1$.
Now the points of intersection of the curve (2) and the surface (1) are given by the zeroes of the function

$$
\begin{align*}
& F(u)=l\left(u^{4}-1\right)+m\left(u^{3}-1\right)+n\left(u^{2}-1\right) \\
& F(u)=l u^{4}+m u^{3}+n u^{2}-l-m-n \tag{3}
\end{align*}
$$

For three point contact, we should have $F^{\prime}(u)=0$,

$$
\begin{equation*}
F^{\prime \prime}(u)=0 \quad, \quad \text { where } F^{\prime}(u)=d F / d u \tag{4}
\end{equation*}
$$

Now $\quad F^{\prime}(u)=4 l u^{3}+3 m u^{2}+2 n u=0$
and $\quad \therefore \quad F^{\prime \prime}(u)=12 l u^{2}+6 m u+2 n=0$
At the origin i.e. at $u=1$, the equation (4) and (5) becomes

$$
\begin{equation*}
4 l+3 m+2 n=0, \quad 12 l+6 m+2 n=0 \tag{5}
\end{equation*}
$$

Solving, $m=-(8 / 3) l, n=2 l$
Putting values in (1), the equation of the required plane is given by

$$
l x-(8 / 3) l y+2 l z=0 \quad \text { or } \quad 3 x-8 y+6 z=0
$$

Kingdom of Saudi Arabia
Ministry of Higher Education
Majmaah University

بسم الهُ الرحمن الرحيم
الـمـلكـة الــربيـة الســوديـة
وزارة التـعـليم الـــلـلـي
جـامـعة المـجـعــة
كلية الحلوم بالزلفي

College of Sciences in Alzulfi
(2) Calculate the curvature and the torsion of the cubic curve given by $r=$ (u, u^{2}, u^{3}).

Solution. Here $\mathbf{r}=\left(u, u^{2}, u^{3}\right)$

$$
\begin{align*}
& \therefore \quad \dot{\mathbf{r}}=\left(1,2 u, 3 u^{2}\right) ; \ddot{\mathbf{r}}=(0,2,6 u), \ddot{\mathbf{r}}=(0,0,6) \\
& \therefore \quad \dot{\mathbf{r}} \times \ddot{\mathbf{r}}=\left(\mathbf{i}+2 u \mathbf{j}+3 u^{2} \mathbf{k}\right) \times(2 \mathbf{j}+6 u \mathbf{k}) \\
& =2 \mathbf{k}-6 u \mathbf{j}+12 u^{2} \mathbf{i}-6 u^{2} \mathbf{i} \\
& =6 u^{2} \mathbf{i}-6 u \mathbf{j}+2 \mathbf{k}=\left(6 u^{2},-6 u, 2\right) \\
& =2\left(3 u^{2},-3 u, 1\right) \\
& \therefore \quad|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|=2\left(9 u^{4}+9 u^{2}+1\right)^{1 / 2} \text {. } \\
& \text { Also } \quad|\dot{\mathbf{r}}, \ddot{\mathbf{r}}, \ddot{\mathbf{r}}|=\dot{\mathbf{r}} \times \ddot{\mathbf{r}} \cdot \ddot{\mathbf{r}}=2\left(3 u^{2},-3 u, 1\right) \cdot(0,0,6) \\
& =2(0+0+6)=12 \\
& \therefore \quad \kappa=\frac{|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|}{|\dot{\mathbf{r}}|^{3}}=\frac{2\left(9 u^{4}+9 u^{2}+1\right)^{1 / 2}}{\left(1+4 u^{2}+9 u^{4}\right)^{3 / 2}} \tag{1}\\
& \text { and } \\
& \tau=\frac{[\stackrel{\mathbf{r}}{\mathbf{r}} \ddot{\mathbf{r}}, \ddot{\mathbf{r}}]}{|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|^{2}}=\frac{12}{4\left(9 u^{4}+9 u^{2}+1\right)} \\
& \text { or } \\
& \tau=\frac{3}{\left(9 u^{4}+9 u^{2}+1\right)} \tag{2}
\end{align*}
$$

Question 4:

(1) If \boldsymbol{C} is the original curve and $\boldsymbol{C}_{\mathbf{1}}$ is the locus of the center of the circle of curvature. Prove that the tangent to $\boldsymbol{C}_{\mathbf{1}}$ lies in the normal plane at \boldsymbol{C}.

Proof: Let unity as suffix be used to distinguish quantities belonging
(i) If \mathbf{c} is the position vector of the centre of circle of curvature of \mathbb{C} we have

$$
c=r+\rho n
$$

Differentiating w.r.t. ' s '

$$
\begin{aligned}
& \begin{array}{ll}
\frac{d \mathbf{c}}{d s_{1}}=\mathbf{t}_{\mathbf{1}}=(\mathbf{r}+\rho \mathbf{n})^{\prime} \frac{d s}{d s_{1}} \quad \text { or } \quad \mathbf{t}_{\mathbf{1}}=\left(\mathbf{r}^{\prime}+\rho \mathbf{n}^{\prime}+\rho^{\prime} \mathbf{n}\right)\left(\frac{d s}{d s^{2}}\right] \\
\mathbf{t}_{\mathbf{1}}=\left[\mathbf{t}+\rho^{\prime} \mathbf{n}+\rho(\tau \mathbf{b}-\kappa \mathbf{t})\right]\left(\frac{d s}{d s}\right) &
\end{array} \\
& \begin{array}{ll}
\text { or } & \mathbf{t}_{1}=\left[t+\rho^{\prime} \mathbf{n}+\rho(\tau \mathbf{b}-\kappa \mathbf{t})\right]\left(\frac{d s}{d s_{1}}\right) \\
\text { or } & \mathbf{t}_{1}=\left(\rho^{\prime} \mathbf{n}+\rho \tau \mathbf{b}\right)(d s)
\end{array} \\
& {\left[\because \mathbf{n}^{\prime}=\tau \mathbf{b}-\mathrm{k} \overline{\mathrm{k}}\right]} \\
& \text { or } \\
& \mathbf{t}_{1}=\left(\rho^{\prime} \mathbf{n}+\rho \tau \mathbf{b}\right)\left(\frac{d s}{d s_{1}}\right) \quad[\because \rho \kappa=1]
\end{aligned}
$$

This relation shows that the tangent to C_{1} lies in the plane containing n and b ie. normal plane to C and is inclined to n at an angle α given by

$$
\tan \alpha=\frac{\rho \tau}{\rho^{\prime}}=\frac{\rho}{\sigma \rho^{\prime}}
$$

(ii) If κ is constant i.e. ρ is constant, then $\rho^{\prime}=0$
\therefore from equation (1) we get

$$
\mathbf{t}_{1}=\rho \tau \mathbf{b} \frac{d s}{d s_{1}}
$$

Taking module of both sides, we get

$$
\begin{array}{ll}
1=\rho \cdot \tau \frac{d s}{d s_{1}} \quad & \text { ie. } \quad \frac{d s}{d s_{1}}=\frac{1}{\rho \tau} \\
t_{1}=h
\end{array}
$$

from (2) and (3) $t_{1}=b$
Differentiating w.r.t. ' s_{1} '

$$
\begin{array}{ll}
\frac{d \mathbf{t}_{1}}{d s_{1}}=b^{\prime} \frac{d s}{d s_{1}} & \text { or } \quad \frac{d \mathbf{t}_{1}}{d s_{1}}=\kappa_{1} n_{1}=-\tau n \frac{d s}{d s_{1}} \\
\kappa_{1} \mathbf{n}_{1}=-\tau n \frac{1}{\rho \tau} & \text { or } \quad \kappa_{1} n_{1}=-\kappa n .
\end{array}
$$

or $\quad \kappa_{1} n_{1}=-\tau n \frac{1}{\rho \tau}$
This clearly shows that \mathbf{n}_{1} is parallel to \mathbf{n} and choosing the direction of n_{1} opposite to that of n such that $n_{1}=-n$. Therefore from (4); $\kappa_{1}=\kappa$.

Kingdom of Saudi Arabia بسم الله الرحمن الرحيم
Ministry of Higher Education
Majmaah University
College of Sciences in Alzulfi

اسم المادة:- مقتمة هندسة تقاضلية \quad رقم ورمز المادة: MATH 472 + MAT 475-Z المستوى:- الثامن تاريخ الامتحان:- 1435-7-19
(2) For a spherical curve, prove that $\rho+\frac{d^{2} \rho}{d \psi^{2}}=\mathbf{0}$.

Solution. A spherical curve means a curve lying on a sphere. We have proved in Ex. 1 (a) above that for a spherical curve,

$$
\frac{d}{d s}\left(\sigma \rho^{\prime}\right)+\frac{\rho}{\sigma}=0
$$

or $\quad \frac{d}{d s}\left(\frac{d s}{d \psi} \frac{d \rho}{d s}\right)+\frac{\rho}{\sigma}=0$
or
$\frac{d}{d \psi}\left(\frac{d \rho}{d \psi}\right) \frac{d \psi}{d s}+\rho \cdot \frac{d \psi}{d s}=0$

$$
\left[\because \sigma=\frac{1}{\tau}=\frac{d x}{d x}\right]
$$

or

$$
\frac{d^{2} \rho}{d \psi^{2}}+\rho=0 . \quad\left[\begin{array}{l}
\text { on dividing by } \\
\frac{d \psi}{d s}
\end{array}\right]
$$

Proved

أنتّهت نموذج إلإجابة

جامعة المجمعة
كلية العلوم بالزلفي الـي
نموذج تحويل العلامات النهائي من مئوي الى أحرف لطلبة البكالوريوس

	الثانّي		الفصل الدراسي
MATH 472	رقم المادة	قسم الرياضيات	القّس
مقامة فى الهناسة التفاضلية		د.	(استّاذ المادة
0	عدد الطلبة الفالبين عن التهاكي	27	عدد الطلبة المسج
2	عدد الطّبة الراسبين	25	
F	العلامة الآنبا	2.85	متوسط اللارجات
92.59\%	نسبة النجاح	A+	

$\begin{gathered} D \\ \frac{D}{D} \\ \frac{D}{D} \end{gathered}$	Percentage	SUM	Count	TO	From	Average
	3.7037037	5	1	100	95	A+
	7.40740741	9.5	2	94	90	A
	0	0	0	89	85	B+
	3.7037037	4	1	84	80	B
	14.8148148	14	4	79	75	C+
	25.9259259	21	7	74	70	C
	11.1111111	7.5	3	69	65	D+
	25.9259259	14	7	64	60	D
	7.40740741	2	2	59	0	F
2.85	100	$\underline{7}$	27		Total Student	

-	-	10	0	${ }^{+}$	4	\pm	0	-	0	¢	0	0	0	\pm	+	,	\pm	\pm	0	0	0	0	0						

61	1
63	2
47	3
60	4
72	5
68	6
40	7
66	8
70	9
62	10
72	11
91	12
75	13
60	14
72	15
81	16
65	17
96	18
73	19
90	20
75	21
77	22
71	23
77	24
72	25
60	26
60	27

Kingdom of Saudi Arabia Ministry of Higher Education Majmaah University Zulfi, College of Sciences Mathematics Department

Student Course Evaluation Form

The purpose of this evaluation is to collect instructor feedback for improving this course and the Mathematics program. Information will also be used for program accreditation purposes.

I. Program Learning Outcomes Evaluations

II. Catalog Description, and Course Prerequisites Evaluations:

Based on your experiences in the course, please respond by circling the most appropriate number. Circle N/A for items that are not applicable, or if you have no opinion.

Catalog Description 1434-1435	- Theory of curves in R3-Regular curves, arc length and reparametrization and Natural parametrization. - Serret-Frenet apparatus, Existence and uniqueness theorem for space curves and Bertrand curves. - Involutes and evolutes, Local theory of surfaces, Simple surfaces and Coordinate transformations. - Tangent vectors and tangent spaces, First and second fundamental forms and Normal and geodesic curvature. - Weingarten map, Pricipal Gaussian and mean curvatures and Geodesics. - Equations of Gauss and Godazzi-Mainardi.						
Course Prerequisites:	PMTH 112 + PMTH127	Circle One (5=Strongly Agree; 1=Strongly disagree)					
2a. Do you believe that the catalog description (above) is accurate for this course?		5	4	3	2	1	N/A
2b. Do you believe that the course prerequisites (above) are appropriate for this course?		5	4	3	2	1	N/A
2c. If not, please list any prerequisites you believe are not appropriate for this course.							

III. Textbook(s) and/or Lab Manuals (if applicable) Evaluations:

Textbook(s) and/or Lab Manuals (if applicable):	- R. Millman \& G.Parker, Elements of differential Geometry. - Manfredo Do Carmo: Differential Geometry of Curves and Surfaces, Birkhauser, Boston, 1992. - Michael Spivak: Introduction to differential Geometry, Vol. 1, 3 Edition, Addison-Wesley, 1965.	$\begin{aligned} & \text { Circle } \\ & \text { 1=Str } \end{aligned}$		$\overline{\text { tro }}$	$\overline{\mathrm{y} \mathrm{~A}}$		
3a. In general, do you believe this to be an appropriate textbook for this course?		5	4	3	2	1	N/A
3b. Was the organization of the textbook appropriate for this course?		5	4	3	2	1	N/A
3c. Was the level of the textbook appropriate for this course?		5	4	3	2	1	N/A

IV. Computer usage (if applicable) Evaluations:

| Computer usage (if applicable): | Circle One
 (5=Strongly Agree;
 1=Strongly | | | | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 4a. Was the use of computer well integrated with the course? | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | N/A |
| 4b. Was the computer lab adequately equipped with well- | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | N/A |

Student Course Evaluation Form

maintained and undated computers? 4c. Was the computer lab equipped with sufficient number of computers?	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{1}$	N/A
4d. Were the special software packages (MATLAB, SPSS, C+, FORTRAN, etc) available and accessible?	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	N/A
4e. Was adequate technical support available when needed?	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	N/A

